• 제목/요약/키워드: Gas Turbine Performance

검색결과 590건 처리시간 0.029초

석탄가스화 복합발전용 가스터빈의 성능 평가 (Performance Evaluation of the Gas Turbine for Integrated Ossification Combined Cycle)

  • 이찬;이진욱;윤용승
    • 한국유체기계학회 논문집
    • /
    • 제2권1호
    • /
    • pp.7-14
    • /
    • 1999
  • This simulation method is developed by using GateCycle code for the performance evaluation of the gas turbine in IGCC(Integrated Gasification Combined Cycle) power plant that uses clean coal gas fuel derived from coal gasification and gas clean-up processes and it is integrated with ASU(Air Separation Unit). In the present simulation method, thermodynamic calculation procedure is incorporated with compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. With the clean coal gases produced through commercially available chemical processes, their compatibility as IGCC gas turbine fuel is investigated in the aspects the overall performance of the gas turbine system. The predictions by the present method show that the reduction of the air extraction from gas turbine to ASU results in a remarkable increase in the efficiency and net power of gas turbines, but it is accompanied with a shift of compressor operation point toward to surge limit. In addition, the present analysis results reveal the influence of compressor performance characteristics of gas turbine have to be carefully examined in designing the ASU integration process and evaluating the overall performance parameters of the gas turbine in IGCC Power plant.

  • PDF

Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석 (Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel)

  • 이종준;차규상;손정락;주용진;김동섭
    • 대한기계학회논문집B
    • /
    • 제32권1호
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

상용 마이크로 가스터빈의 구성부 성능분석 (Evaluation of Component Performance of a Commercial Micro Gas Turbine)

  • 이종준;윤재은;김동섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.331-337
    • /
    • 2005
  • This study aims at evaluation of component performance of a commercial micro gas turbine by detailed measurements of various system parameters. A test facility to measure performance of a micro gas turbine was set up. Performance parameters such as turbine exit temperature, exhaust gas temperature, engine inlet temperature, compressor discharge pressure and fuel flow rate were measured. Variations in measured data and estimated performance parameters were analyzed. In addition to overall engine performance, component characteristic parameters including the turbine inlet temperature, the compressor efficiency, the turbine efficiency, the recuperator effectiveness were estimated. Behaviors of the estimated characteristic parameters with operating condition change were examined.

  • PDF

GE 7F 가스터빈의 성능개선 결과 분석 (GE 7F Gas Turbine Performance Improvement Results and Analysis)

  • 정재모;심재용;박정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2111-2116
    • /
    • 2004
  • This paper shows how to improve the efficiency and output and to reduce NOx emission of Seoinchon GE 7F gas turbine, Korea Western Power Co. by replacing the existing 7F gas turbine with new 7FA+e gas turbine because the performance of 7F gas turbine was degraded due to long term operation. In this paper, we will study gas turbine development trend and O&M technology. Finally, we will review for uprate of Seoinchon 7F gas turbine to help someone to improve their units in the future.

  • PDF

석탄가스화 복합화력 발전용 가스터빈 성능해석 (Performance Analysis of a Gas Turbine for Integrated Gasification Combined Cycle)

  • 이종준;차규상;손정락;김동섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.771-774
    • /
    • 2007
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed with hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of the syngas to the performance of a gas turbine in a combined cycle power plant. For this purpose, a commercial gas turbine is selected and its performance characteristics are analyzed with syngas. It is found that different heating values of those fuels and chemical compositions in their combustion gases are the causes in the different performance characteristics. Also, Changing of turbine inlet Mass flow lead to change the turbine matching point, in the event the pressure ratio is changed.

  • PDF

탈설계점 효과를 고려한 석탄가스화 복합발전용 가스터빈의 성능평가 (Performance Evaluation of the Gas Turbine of Integrated Gasification Combined Cycle Considering Off-design Operation Effect)

  • 이찬;김용철;이진욱;김형택
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.209-214
    • /
    • 1998
  • A thermodynamic simulation method is developed for the process design and the performance evaluation of the gas turbine in IGCC power plant. The present study adopts four clean coal gases derived from four different coal gasification and gas clean-up processes as IGCC gas turbine fuel, and considers the integration design condition of the gas turbine with ASU(Air Separation Unit). In addition, the present simulation method includes compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. The present prediction results show that the efficiency and the net power of the IGCC gas turbines are seperior to those of the natural gas fired one but they are decreased with the air extraction from gas turbine to ASU. The operation point of the IGCC gas turbine compressor is shifted to the higher pressure ratio condition far from the design point by reducing the air extraction ratio. The exhaust gas of the IGCC gas turbine has more abundant wast heat for the heat recovery steam generator than that of the natural gas fired gas turbine.

  • PDF

Utilization of alternative marine fuels for gas turbine power plant onboard ships

  • El Gohary, M. Morsy;Seddiek, Ibrahim Sadek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.21-32
    • /
    • 2013
  • Marine transportation industry is undergoing a number of problems. Some of these problems are associated with conventional marine fuel-oils. Many researchers have showed that fuel-oil is considered as the main component that causes both environmental and economic problems, especially with the continuous rising of fuel cost. This paper investigates the capability of using natural gas and hydrogen as alternative fuel instead of diesel oil for marine gas turbine, the effect of the alternative fuel on gas turbine thermodynamic performance and the employed mathematical model. The results showed that since the natural gas is categorized as hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using the natural gas was found to be close to the diesel case performance. The gas turbine thermal efficiency was found to be 1% less in the case of hydrogen compared to the original case of diesel.

바이오 가스를 연료로 사용하는 증기분사 가스터빈 열병합발전 시스템의 성능분석 (Performance evaluation of a steam injected gas turbine CHP system using biogas as fuel)

  • 강도원;강수영;김동섭;허광범
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.57-62
    • /
    • 2010
  • MW-class gas turbines are suitable for distributed generation systems such as community energy systems(CES). Recently, biogas is acknowledged as an alternative energy source, and its use in gas turbines is expected to increase. Steam injection is an effective way to improve performance of gas turbines. This study intended to examine the influence of injecting steam and using biogas as the fuel on the operation and performance a gas turbine combined heat and power (CHP) system. A commercial gas turbine of 6 MW class was used for this study. The primary concern of this study is a comparative analysis of system performance in a wide biogas composition range. In addition, the effect of steam temperature and injected steam rate on gas turbine and CHP performance was investigated.

화학공정 플랜트 해석용 소프트웨어를 이용한 복합화력 발전용 재열 사이클 가스터빈의 성능특성에 관한 연구 (Performance Analysis of a Reheat-cycle Gas Turbine for Combined Cycle Power Plants Using a Simulation Software for Chemical Process Plants)

  • 박민기;노승탁;손정락
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.472-479
    • /
    • 2006
  • Recently, various methods have been developed to improve the performance of gas turbines for combined cycle power plants. This paper especially focused on the gas turbine with a reheat process. The purpose of this study is to analyze performance characteristics of a reheat-cycle gas turbine on both a design point and off-design operations. Results of the parametric study of this model show how operating and design parameters influence on the performance of the gas turbine. Moreover, possibilities for the analysis of off-design performance based on a self-generated compressor performance characteristic map are presented.

터빈입구온도 보정기법을 적용한 가스터빈 성능진단 프로그램 개발 (Development of a Performance Diagnosis Program for Gas Turbines Using Turbine Inlet Temperature Correction)

  • 이재홍;강도원;김동섭
    • 한국유체기계학회 논문집
    • /
    • 제20권2호
    • /
    • pp.32-40
    • /
    • 2017
  • In this study, an in-house program to analyze the performance degradation for gas turbines is developed using MATLAB and is validated using commercial software. This program consists of design and off-design calculations. The results of design calculation is used for reference values of off-design calculation. The off-design calculation is composed of measured and expected performance analyses, and turbine inlet temperature correction. In general, performance degradation is analyzed by comparing the results of measured and expected performance analysis. However, if gas turbine performance degrades, turbine inlet temperature might increase due to the general control logic to comply with the power demand. Therefore, it is required to consider the deviation of turbine inlet temperature from the normal value in the performance diagnosis to analyze the performance degradation exactly. In this study, a special effort is given to the correction of turbine inlet temperature. The accuracy of the developed program is confirmed by comparison with commercial software, and its capability of performance diagnosis using the turbine inlet temperature correction is demonstrated.