• Title/Summary/Keyword: Gas Supplies

Search Result 75, Processing Time 0.03 seconds

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

A investigation study on the Maintenance Management for Fire Safety According to Analysis of Fire Accident in Korea(I) (국내 지하공동구의 화재사례 분석을 통한 화재안전관리방안에 관한 조사 연구(I))

  • Kim, Dong-Eun;Shin, Yi-Chul;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.328-333
    • /
    • 2008
  • Underground utility tunnels are important facilities not only as an essential social infrastructure for modern information society but as the economic and efficient carrier of various urban infrastructure including electric power lines, communication cables, gas pipes, water supply and drainage pipes and energy supplies to metropolitan and residential areas. It is the aim of this study to investigation study on the Maintenance Management for Fire Safety According to Analysis of Fire Accident in Korea.

  • PDF

A Study on Probabilistic Production Costing for Solar Cell Generators (태양광발전원의 확률론적인 발전비용 산정에 관한 연구)

  • Park, Jeong-Je;Choi, Jae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.700-707
    • /
    • 2009
  • The application of renewable energy in electric power systems is growing rapidly in order to make provision for the inequality of the climate, the dwindling supplies of coal, oil and natural gas and a further rise in oil prices. Solar cell generators(SCG) is one of the fastest growing renewable energy. This paper presents a methodology on probabilistic production cost simulation of a power system including SCGs. The generated power by SCGs is variable due to the random variation of solar radiation. In order to solve this problem, the SCGs is modeled as multi-state operational model in this paper. Probabilistic production cost of a power system can be calculated by proposed method considering SCGs with multi-state. The results show that the impacts of SCGs added to a power system can be analyzed in view point of production cost using the proposed method.

A Study on the Weekly Capacity Factor Assessment of Solar Cell Generator (태양광에너지전원의 주간설비이용율 추정에 관한 연구)

  • Park, Jeon-Je;Wu, Liang;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.468_469
    • /
    • 2009
  • The application of renewable energy in electric power systems is growing rapidly in order to make provision for the inequality of the climate, the dwindling supplies of coal, oil and natural gas and a further rise in oil prices. Solar cell generators(SCG) is one of the fastest growing renewable energy. A study on the renewable energy is getting more important for the application of renewable energy. This paper presents the capacity factor of SCG by calculating the probabilistic production energy of SCG.

  • PDF

Development of Air Supply System for FCEV Bus (연료전지 버스용 공기공급시스템 개발)

  • Park, Chang-Ho;Cho, Kyung-Seok;Kim, Woo-June;Oh, Chang-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.417-420
    • /
    • 2006
  • FCEV uses electric energy generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supplies Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8%$ of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the overall performance of FCEV. This study will present developing process of an air blower and its consisting parts respectively.

  • PDF

Exhaust Emissions Characteristics of a Small Diesel Engine using Rice-bran Oil (미강유 적용 소형 디젤엔진의 배기배출물 특성)

  • 나우정;유병규;정진도
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-134
    • /
    • 1998
  • It seems possible, by use of vegetable oils, to solve the pollution problem caused by the exhaust gas from diesel-engine vehicles. Recently vegetable oils has received considerable attention as an alternative and clean energy source to the foreseeable depletion of world oil supplies. The objective of this study is to experimentally investigate the characteristics of exhaust emissions of a small diesel engine using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. SO$_2$ emission from the pure and the treated rice-bran oils was not detected at speeds hgher than 1,800 rpm while that from the light oil was detected at all the speeds at 4/4 load. NOx emission form these vegetable oils was generally higher compared to that from the light oil for most of the test conditions. tendency opposite to that of NOx emission. The data obtained in this experiment may be applicable for the desist of small diesel engine using the alternative fuels.

  • PDF

A Study on the Feasibility Test & the Performance Experiment of Small Type Diesel Engine using the an Rice-bran oil (미강유적용 소형 디젤기관의 타당성 검증 및 성능실험에 관한 연구)

  • Yu, B.G.;Cha, K.O.;La, W.J.;Chung, J.D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • Bio-diesel oil is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. Recently the use of bio-oils in disel engines has received considerable attention to the forseeable depletion of world oil supplies. So, Bio-diesel oil has been attracted with attentions as an alternative and clean energy source. The objective of this paper is to experimentally investigate the characteristic of performance using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. We included rice-bran oil and applied ultrasonic energy to highly viscous bio-oils. These methods seems to have never been tried yet. The final data may be able to be applicated for the design of the diesel engine using an alternative fuel.

  • PDF

40kV Solid State Pulsed Power Supply for Environmental Applications (40kV 친환경 응용을 위한 반도체 기반 펄스 전원장치)

  • Song, Seung-Ho;Cho, Hyun-Bin;Park, Su-Mi;Lee, Seung-Hee;Jin, Hee-Sung;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.45-47
    • /
    • 2018
  • This paper describes the 40kV solid state pulsed power supply for environmental applications. The output specifications of the pulsed power supply are 40kV, 300A, 3kHz, and average output power of 13kW. In order to generate a high voltage, a series stacking cell structure is used which is charged in parallel and discharged in series. Due to this structure, there is no dynamic voltage balancing problem as well as static voltage balancing problem for switches used in high voltage pulse power supplies. To verify this pulse power supply design, PSpice modeling was performed. Finally, experimental results with non-inductive resistive load and gas treatment reactor proved the reliability of the solid state pulsed power supply.

  • PDF

Experimental and Numerical Study of Low NOx Multi-Staged Burner in the Test Combustor (시험용 연소로에서의 다단 저 NOx 버너의 실험 및 수치적 연구)

  • Choi, Yun-Ki;Kang, Kyung-Tae;Lim, Ki-Suk;Ko, Dong-Wan;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1339-1347
    • /
    • 2004
  • Development of the low NOx heating boiler was strongly asked due to severe air pollution and the large number of boilers in korea. Compactness of the commercial boiler was also important because of low manufacturing cost and easy installation. In this study. newly developed compact low NOx burner, using turbulent gas diffusion combustion with multi-staged air supplies and multiple fuel nozzles, was investigated. Comparison study of the new burner was performed between experimental results and computational analysis. Commercial computational fluid dynamic(CFD) program named CFX-5.6 was used for numerical analysis of the low NOx burner inside the test combustor. Comparisons of experiment data and numerical result were performed under various equivalence ratio and fuel flow rate.

Dielectric Barrier Discharge for Ultraviolet Light Generation and Its Efficient Driving Inverter Circuit

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.101-105
    • /
    • 2004
  • The efficient power MOSFET inverter applied for a simple and low cost power supply is proposed for driving the dielectric barrier discharge (DBD) lamp load. For decades, the DBD phenomenon has been used for ozone gas production in industry. In this research, the ultraviolet and visible light sources utilizing the DBD lamp is considered as the load for solid-state high frequency power supply. It is found that the simple voltage-source single-ended quasi-resonant ZVS inverter with only one active power switch could effectively drive this load with the output power up to 700 W. The pulse density modulation based control scheme for the single-ended quasi-resonant ZVS inverter using a low voltage and high current power MOSFET switching device is proposed to provide a linear power regulation characteristic in the wide range 0-100% of the full power as compared with the conventional control based Royer type parallel resonant inverter type power supplies.