• Title/Summary/Keyword: Gas Sensor

Search Result 1,639, Processing Time 0.084 seconds

Development of Core Technologies for Integrating Combustible Hydrogen Gas Sensor (수소가스 감지용 가연성 가스센서 제작을 위한 요소기술 개발)

  • Yun, Eui-Jung;Park, Hyeong-Sik;Lee, Seok-Tae;Park, Nho-Kyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.228-233
    • /
    • 2007
  • Core technologies for integrating hydrogen gas sensor were investigated. In this study, the thermally isolated micro-hot-plate with areas of $100{\times}100-260{\times}260{\mu}m^2$ was fabricated by utilizing surface micromachining technique that provides better manufacturing yield than bulk micromachining counterpart. The optimum design of the sensor was peformed by analyzing the thermal profile of the structure obtained from a ANSYS simulator. The 400-nm-thick polysilicon films doped with phosphorus, the 300-nm-thick aluminum films, and the 200-nm-thick $SnO_2$(or ZnO)films were used as the micro-heater material, the temperature sensor material, and the gas sensitive material, respectively. The experimental results show that the developed gas sensors can detect $H_2$ concentration as low as 1 ppm.

Improvement of Sensitivity in Porous Silicon Alcohol Gas Sensors by UV Light (자외선조사에 의한 다공질 실리콘 알코올 센서의 감도 개선)

  • Kim, Seong-Jin;Choe, Bok-Gil
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.676-680
    • /
    • 1999
  • To do breath alcohol measurement, a sensor is necessary that it can detect low alcohol gas concentration of 0.01% at least. In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to measure low alcohol gas concentration. The sensor using porous silicon layer has some sensitivity at room temperature by very large effective surface area, but there is still much room for improvement. In this experiment, we measured the capacitance of the sensor under 254 nm UV light on the porous silicon layer, in which alcohol solution was kept in a flask at 25, 35, and $45^{\circ}C$ by a heater. As the result, the improvement of sensitivity by illuminating UV light was observed. The increasing rate of the capacitance was shown to be double more than those measured under UV-off state. It is supposed that UV light activates response of the oriental and interfacial polarizations which have slow relaxation time for AC field.

  • PDF

Sensing characteristics of polyaniline sensor coated with porous PVDF layers to methanol gas under various humidity conditions (다공성 PVDF막이 코팅된 Polyaniline 센서의 다양한 습도분위기의 메탄올 가스에 대한 감응특성)

  • Lim, Cheol-Beom;Sohn, Sung-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2006
  • Hydrophobic polymer [ex. Poly(vinylidenfluoride)] layer was coated on polyaniline (PANi) sensor to reduce the contamination humidity. The differences in sensitivity to methanol gas detection in various humidity condition between pure-PANi sensor and sensor coated with poly(vinylidenfluoride) polymer (PVDF) (coated-PANi sensor) were investigated. Considering the relation between the density of pore, which was coated on the layer of the PANi sensor, and sensitivity was investigated. To fabricate the porous PVDF layer on PANi sensor, poly(vinylalcohol) (PVA), which is water-soluble polymer, was used. Coated-PANi sensor was less affected by humidity compared with pure-PANi sensor. And higher density of pore on PVDF layer led to higher sensitivity.

Performance Improvement of CO Sensor Signal Conditioner for Early Fire Detection System (조기화재 감시시스템을 위한 CO센서의 시그널컨디셔너 성능개선)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.82-87
    • /
    • 2017
  • This paper presents performance improvement of CO gas sensor signal conditioner for early fire warning system. The warning system is based on the CO sensor and its advanced signal conditioning modules network that employ electochemical gas sensor. The electochemical has advantage of having a linear output and operating with a low consumption and fast response. This electrochemical gas sensor contains a gas membrane and three electrodes(working, counter, reference electrode) in contact with an electrolyte. To use a three-electrode sensor, a voltage has to be applied between the working and the reference electrode according to the specification of the sensor. In this paper, we designed these requirements that should be considered in temperature compensation algorithm and electrode measurement of CO sensor modules by using advanced signal conditioning method included 3-electrode. Simulation and experimental results show that signal conditioner of CO sensor module using 3-electrode have a advantage linearity, sensitivity and stability, fast response etc..

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Development of Accelerated Life Test Method for Constant Electrical Potential Electrolysis Gas Sensor (정전위 전해식 가스센서의 가속수명시험법 개발)

  • Yang, Il Young;Kang, Jun Gu;Yu, Sang Woo;Oh, Geun Tae;Na, Yoon Gyoon
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.180-191
    • /
    • 2016
  • Purpose: The purpose of this study was to develop the accelerated life test method for Constant Electrical Potential Electrolysis gas sensor (CEPE gas sensor). Methods: The parts and modules of CEPE gas sensor were analyzed by using Reliability Block Diagram (RBD). Failure Mode and Effect Analysis (FMEA) and Quality Function Deployment (QFD) methods were performed for each part to determine the most affecting stress factor in its life cycle. The long term testing was conducted at three different dry heat levels and the acceleration factor was developed by using Arrhenius relationship. Conclusion: The acceleration factor for CEPE gas sensor was developed by using FMEA, QFD, and statistical analysis for its failure data. Also qualification tests were designed to meet the target life.

Data processing of sensor output for correction of pressure measurement value of an anesthesia ventilator (마취기용 인공호흡기의 압력 측정값의 보정을 위한 센서 출력의 데이터 처리)

  • 박영준;이종수;김영길
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.1067-1070
    • /
    • 1999
  • Anesthesia gas to pour to patients affects the flow and volume as the pressure difference of an oxygen and an anesthesia gas. An anesthesia gas, being injurious and polluting an environment, must control the pressure of an oxygen gas because of being used by closing up tight. But a pressure sensor to use for measuring an oxygen gas appears other pressure as the characteristic and the error difference of elements to use for implementing an system. A medical machine such as an anesthesia ventilator must be accurate because of using for the person's body. So we intend to implement an system for a sensor pressure measurement not to be change regardless of an environment. This papers is the target that a sensor pressrue measurement to be changed in environment is equal to actual sensor pressure measurement. So an implemented system is using analog filter and digital filter to reduce a noise. And we are using auto-zeroing and calibration to correct a sensor pressure which is changed in environment. Through such a process we increase the accuracy and the confidence of an anesthesia ventilator by controlling the flow of an anesthesia gas.

  • PDF

Hydrogen Sensing Properties of Multiwall Carbon Nanotubes Decorated with TiO2 Nanoparticles at Room Temperature (TiO2 나노입자가 코팅된 다중 벽 탄소 나노튜브의 상온에서의 수소 가스 검출 특성)

  • Park, Sunghoon;Kang, Wooseung
    • Journal of Surface Science and Engineering
    • /
    • v.48 no.6
    • /
    • pp.309-314
    • /
    • 2015
  • Multiwall carbon nanotubes are synthesized by using VLS mechanism for the application to $H_2$ gas sensor. MWCNT is not suitable for hydrogen gas sensor due to its low response to the gas. To enhance the gas sensing performance, multiwall carbon nanotubes are coated with $TiO_2$ nanoparticles. Scanning electron microscopy and Transmission electron microscopy showed that the synthesized MWCNT were well dispersed with the diameter and wall thickness of approximately 10-30nm and 5nm, respectively. The MWCNT sensor showed the sensitivities of 1.33-9.5% for the $H_2$ concentration of 100-5000ppm at room temperature. These sensitivities are significantly improved to 6.64-46.65% by coating $TiO_2$ nanoparticles to the MWCNT sensor. The mechanisms of $H_2$ gas sensing improvement of the MWCNT sensor coated with $TiO_2$ nanoparticles are discussed.

A Study on the Early Fire Detection by Using Multi-Gas Sensor (다중가스센서를 이용한 화재의 조기검출에 대한 연구)

  • Cho, Si Hyung;Jang, Hyang Won;Jeon, Jin Wook;Choi, Seok Im;Kim, Sun Gyu;Jiang, Zhongwei;Choi, Samjin;Park, Chan Won
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.342-348
    • /
    • 2014
  • This paper introduced a novel multi-gas sensor detector with simple signal processing algorithm. This device was evaluated by investigating the characteristics of combustible materials using fire-generated smell and smoke. Plural sensors including TGS821, TGS2442, and TGS260X were equipped to detect carbon monoxide, hydrogen gas, and gaseous air contaminants which exist in cigarette smoke, respectively. Signal processing algorithm based on the difference of response times in fire-generated gases was implemented with early and accurately fire detection from multiple gas sensing signals. All fire experiments were performed in a virtual fire chamber. The cigarette, cotton fiber, hair, polyester fiber, nylon fiber, paper, and bread were used as a combustible material. This analyzing software and sensor controlling algorithm were embedded into 8-bit micro-controller. Also the detected multiple gas sensor signals were simultaneously transferred to the personnel computer. The results showed that the air pollution detecting sensor could be used as an efficient sensor for a fire detector which showed high sensitivity in volatile organic compounds. The proposed detecting algorithm may give more information to us compared to the conventional method for determining a threshold value. A fire detecting device with a multi-sensor is likely to be a practical and commercial technology, which can be used for domestic and office environment as well as has a comparatively low cost and high efficiency compared to the conventional device.

Fabrication and Performances of Amperometric Gas Sensors (전류검출형 가스센서의 구성 및 성능평가에 관한 연구)

  • 김귀열;박용필;이준웅;서장수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1073-1075
    • /
    • 2001
  • The nitrogen oxides, NO and NO2, abbreviated usually as NOx, emitted from combustion facilities such as power plants and automobiles are the typical air-pollutants causing acid rain and photochemical smog. In order to solve the NOx-related pollution problems effectively, we need efficient techniques to monitor NOx in the combustion exhausts and in environments. Development of solid-state electrochemical devices for detecting NOx is demonstrated based on various combination of solid electrolytes and auxiliary sensing materials. The object of this research is to develop various sensor performance for solid state amperometric sensor, and to test gas sensor performance manufactured. So we try to present a guidance for developing amperometric gas sensor. We concentrated on development of manufacturing process and performance test.

  • PDF