• Title/Summary/Keyword: Gas Leak Detector

Search Result 22, Processing Time 0.023 seconds

A Study on the Development and Accuracy Improvement of an IR Combustible Gas Leak Detector with Explosion Proof (방폭형 적외선 가연성가스 누출검지기 개발 및 정확도 향상 연구)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Jo, Young-Do;Kwon, Jeong-Rock;Ahn, Sang-Guk;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we developed an explosion proof type and portable combustible gas leak detector and proposed an algorithm to improve the accuracy for measuring gaseous concentrations. The nation's first we developed an infrared gas leak detector with explosion proof standard(Ex d ib) and improved measuring accuracy by using linearization recursion equation and 2nd Lagrange interpolation polynomial. Together, we advanced their performances and added their easy functions after investigating field demands. To compare our and other company's detectors, we performed measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated the excellence of our instruments in measuring accuracy other than detecters through experimental results.

A Study on Validation for Mapping of Gas Detectors at a BTX Plant (BTX 공정에서 Gas Detector Mapping 적정성 검토에 관한 연구)

  • Seo, Ji Hye;Han, Man Hyoeng;Kim, Il Kwon;Chon, Young Woo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.168-178
    • /
    • 2017
  • In order to prevent major and chemical accidents, some of the plants which would like to install and operate hazard chemicals handling facilities must submit Off-site Consequence Analysis due to recent arisen leak accidents since 2015. A lot of chemical industrials choose gas detectors as mitigation equipment to early detect gas vapor. The way of placement of gas detectors has two methods; Code-based Design(CBD) and Performance-based Design. The CBD has principles for gas detectors to be installed with consideration for the place that is expected to accumulate gas, and the leak locations according to legal standards and technical guidelines, and has a possibility to be unable to detect by these rules to locate gas detectors by vapor density information. The PBD has two methods; a Geographic Method and Scenario based Method. The Scenario-based Method has been suggested to make up for the Geographic Coverage Method. This Scenario-based Method draw the best optimum placement of gas detectors by considering leak locations, leak speed information, leak directions and etc. However, the domestic placement guidelines just refers to the CBD. Therefore, this study is to compare existing placement location of gas detectors by the domestic CBD with placement locations, coverages and the number of gas detectors in accordance with the Scenario-based Method. Also this study has measures for early detecting interest of Vapor Cloud and suitable placement of gas detectors to prevent chemical accidents. The Phast software was selected to simulate vapor cloud dispersion to predict the consequence. There are two cases; an accident hole size of leak(8 mm) from API which is the highst accident hole size less than 24.5 mm, and a normal leak hole size from KOSHA Guide (1.8 mm). Detect3D was also selected to locate gas detectors efficiently and compare CBD results and PBD results. Currently, domestic methods of gas detectors do not consider any risk, but just depend on domestic code methods which lead to placement of gas detectors not to make personnels recognize tolerable or intolerable risks. The results of the Scenario-based Method, however, analyze the leak estimated range by simulating leak dispersion, and then it is able to tell tolerable risks. Thus it is considered that individuals will be able to place gas detectors reasonably by making objectives and roles flexibly according to situations in a specific plant.

Effect of a Series Connection of a Bi-Electrolyte Hydrogen Sensor in a Leak Detector

  • Han, Hyeuk Jin;Park, Chong Ook;Hong, Youngkyu;Kim, Jong Suk;Yang, Jeong Woo;Kim, Yoon Seo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.6-9
    • /
    • 2015
  • Conventional leak detectors are widely based on helium gas sensors. However, the usage of hydrogen sensors in leak detectors has increased because of the high prices of helium leak detectors and the dearth in the supply of helium gas. In this study, a hydrogen leak detector was developed using solid-state hydrogen sensors. The hydrogen sensors are based on Park-Rapp probes with heterojunctions made by oxygen-ion conducting Yttria-stabilized zirconia and proton-conducting In-doped $CaZrO_3$. The hydrogen sensors were used for determining the potential difference between air and air balanced 5 ppm of $H_2$. Even though the Park-Rapp probe shows an excellent selectivity for hydrogen, the sensitivity of the sensor was low because of the low concentration of hydrogen, and the oxygen on the surface of the sensor. In order to increase the sensitivity of the sensor, the sensors were connected in series by Pt wires to increase the potential difference. The sensors were tested at temperatures ranging from $500-600^{\circ}C$.

Feasibility study of a resistive-type sodium aerosol detector with ZnO nanowires for sodium-cooled fast reactors

  • Jewhan Lee;Da-Young Gam;Ki Ean Nam;Seong J. Cho;Hyungmo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2373-2379
    • /
    • 2023
  • In sodium systems, leakage is one of the safety concerns; it can cause chemical reactions, which may result in fires. There are contact and non-contact types of leak detectors, and the conventional method of non-contact type detection is by gas sampling. Because of the complexity of this method, there has always been a need for a simple gas sensor, and the resistive-type nanostructure ZnO sensor is a promising option with various advantages. In this study, a ZnO sensor was fabricated, and the concept was tested as a leak detector using a dedicated experiment facility. The experiment results showed distinctive changes in resistance with the presence of sodium aerosol under various conditions. Replacing the conventional gas sampling with the ZnO sensors is expected to enable identification of the leakage location if used as a point-wise instrumentation and to greatly reduce the total cost, making the system simple, light, and effective. For further study, more tests will be performed to evaluate the sensitivity of key parameters under various conditions.

Development of Methane Gas Leak Detector Using Mid-infrared Ray Sensors with $3.2\;{\mu}m$ ($3.2\;{\mu}m$ 중적외선 센서를 이용한 메탄가스누출검지기의 개발)

  • Park, Gyou-Tae;Lyu, Keun-Jun;Han, Sang-In;Oh, Jeong-Seok;Kim, Ji-Yoon;Ahn, Sang-Guk;Yoon, Myung-Seop;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.48-52
    • /
    • 2008
  • According to extremely industrial growth, gas facilities, equipments and chemical plants are gradually increased due to incremental demands of annual amount of gases. The safety management of gases, however, is still far from their requirements. Methane, the principal ingredient of natural gas, is inflammable and explosive and is much used in factories and houses. Therefore, these gas safety management is essential. So, we, with a program of the gas safety management, hope to develop the detection system of methane gas leak using mid-infrared ray LED and PD with $3.2\;{\mu}m$. The cryogenic cooling device is indispensible at laser but needless at LED driven on the room temperature if manufacturing optical sensor with $3.2\;{\mu}m$. It, consequently, is not only possible to implement for subminiature and portable type but also able to speedily detect methane of extremely small quantities because the $CH_4$ absorption intensity at $3.2\;{\mu}m$ is stronger than that at $1.67\;{\mu}m$. Our objective of research is to prevent gas leak accidents from occurring previously and to minimize the extent of damage from them.

  • PDF

Development of Gas Leak Detecting System Based on Quantum Technology (양자기술기반 가스 누출 감지 시스템 개발)

  • Kwon, Oh Sung;Park, Min Young;Ban, Changwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.5
    • /
    • pp.57-62
    • /
    • 2021
  • Gas is an energy source widely used in general households and industrial sites, and is also a process material widely used in petrochemical and semiconductor processes. However, while it is easy to use, it can cause large-scale human damage due to leakage, explosion, and human inhalation. Therefore, a gas facility safety management solution that can be safely used at home and industrial sites is essential. In particular, the need to develop advanced gas safety solutions is emerging as gas facilities are aging. In this paper, a technology was developed to measure the presence and concentration of gas leaks from a distance by irradiating photons, the minimum energy unit that can no longer be divided into gas facilities, and analyzing the number of reflected photons. This overcomes technical limitations such as short detection distance and inability to detect fine leaks, which are the limitations of conventional electric/chemical gas sensors or infrared-based gas leak detectors.

Effects of Gas Background Temperature Difference(Emissivity) on OGI(Optical Gas Image) Clarity (가스의 배경 온도 차이(방사율)가 OGI(Optical Gas Image)의 선명도에 미치는 영향)

  • Park, Su-Ri;Han, Sang-Wook;Kim, Byung-Jick;Hong, Cheol-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2017
  • Currently gas safety management in the industrial field has been done by LDAR as contact method or methane leak detector as non-contact method. But LDAR method requires a lot of man-power and methane leak detector have the limitation of methane only. Therefore the Research on the OGI(optical gas image) has big attention by industry. This research was undertaken to see the effect of background temperature difference of gas cloud on the clarity of OGI. The background temperature control panel was constructed to cool down the background temperature. OGI was taken at the various methane gas ejection rate and the designed temperature difference. The experimental results showed that the OGI(when the temperature difference is $-6^{\circ}C$) is more clear thane the OGI(when the temperature difference is zero). To quantify the clarity difference, MATLAB's RGB analysis method was employed. The RGB value of the OGI at ${\Delta}T-6^{\circ}C$ was 20% lower than the OGI at ${\Delta}T0^{\circ}C$. The clarity difference by T difference can be explained by the total radiation law. When the background temperature of the gas is lower than the air temperature, the radiation energy coming into the OGI lens is increasing. As the energy is increasing, the OGI image becomes clear.

Optimization of Gas Detector Location by Analysis of the Dispersion Model of Hazardous Chemicals (유해화학물질의 확산 모델 분석을 통한 가스감지기 위치 최적화)

  • Jeong, Taejun;Lim, Dong-Hui;Kim, Min-Seop;Lee, Jae-Geol;Yoo, Byung Tae;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The domestic gas detector installation standards applied to gas detectors, which are one of the facilities that can prevent accidents such as fire, explosion, and leakage that can cause serious industrial accidents, do not take into account the behavioral characteristics of hazardous chemicals in the atmosphere. It can be seen that the technical basis is insufficient because the standard is applied. Therefore, in this study, the size of the leak hole for each facility mainly used in chemical plants and the diffusion distance according to the concentration of interest of hazardous chemicals were analyzed, and based on this, the optimal installation distance for gas detectors for each material was suggested. Using the method presented in this study, more economical and effective gas detector installation can be expected, and furthermore, it can be expected to help prevent serious industrial accidents.

A Basic Study for the Performance Evaluation of a Raman LiDAR Detector for Detecting Hydrogen Gas (수소 가스 검출용 라만 라이다 측정기의 성능 평가를 위한 기초 연구)

  • WONBO CHO;YUNKYU LIM;YANGKYUN KIM;BYOUNGJIK PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.205-211
    • /
    • 2023
  • Hydrogen gas is light and diffuses very quickly. Therefore, when a leakage accident occurs, the damage is great, so a technology that can quickly measure the leakage in the air at a long distance is needed. In order to develop hydrogen gas leaked in the atmosphere in a non-contact manner, an experiment was performed to measure hydrogen gas using a lidar technology using the Raman effect. Hydrogen Raman signals were detected using a UV LED light source, which is a Raman light source, and a spectrometer in the ultraviolet region including an optical filter in the 400-430 nm band. To develop this, a Raman lidar optical structure was designed to measure the hydrogen Raman signal at a certain distance, and the hydrogen Raman spectrum was confirmed using a standard gas to evaluate the performance of this optical structure. The linearity was found to be 0.99 using hydrogen standard gas (10, 50, 100, 500, 1,000 ppm). Accordingly, a Raman lidar capable of measuring hydrogen gas rapidly diffusing in the air in an open state was developed to improve the limitations of existing hydrogen sensors.