• Title/Summary/Keyword: Gas Industries

Search Result 627, Processing Time 0.023 seconds

Research of design challenges and new technologies for floating LNG

  • Lee, Dong-Hyun;Ha, Mun-Keun;Kim, Soo-Young;Shin, Sung-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.307-322
    • /
    • 2014
  • With the rate of worldwide LNG demand expected to grow faster than that of gas demand, most major oil companies are currently investing their resources to develop floating LNG-FLNG (i.e. LNG FSRU and LNG FPSO). The global Floating LNG (FLNG) market trend will be reviewed based on demand and supply chain relationships. Typical technical issues associated with FLNG design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this study, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of new LNG-related technologies such as combined containment system will be presented.

Statistical Reliability Analysis of Numerical Simulation for Prediction of Model-Ship Resistance (선체 저항에 대한 수치 해석의 통계적 신뢰도 분석)

  • Lee, Sang Bong;Lee, Youn Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.321-327
    • /
    • 2014
  • A wide scope of numerical simulations was performed to predict model-ship resistances by using STAR-CCM+ and OpenFOAM. The numerical results were compared with experimental measurements in towing tank to analyze statistical reliability of the present simulations. Based on the normal distribution of resistance errors in 113 cases of container carriers, tankers and very large crude-oil carriers, the confidence intervals of numerical error were estimated as [-2.64%,+2.32%] and [-1.82%, +1.87%] with 95% confidence in STAR-CCM+ and OpenFOAM, respectively. The resistance errors of liquefied natural gas carriers with single- and twin-skeg were confident in the ranges of [-2.51%,+2.64%] and [-2.29%, +1.46%], respectively. The grid uncertainty of resistance coefficients for KCS was also quantitatively analyzed by using a grid verification procedure. The grid uncertainty of OpenFOAM (5.1%) was larger than 4.4% uncertainty of STAR-CCM+ although OpenFOAM provided statistically more confident results than those of STAR-CCM+. It means that a grid system verified under a specific condition does not automatically lead to statistical reliability in general cases.

Power generation characteristics of thermoelectric module for waste heat energy harvesting (폐열에너지 하베스팅을 위한 열전모듈 발전특성 연구)

  • Yun, Jin Chul;Ju, Jung Myoung;Hwang, Jong Hyun;Park, Seong Jin
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.184-189
    • /
    • 2016
  • Recently, due to limitation of $CO_2$ gas emission and increase of demand to reduce energy consumption, lots of researches are conducted to harvest wasted heat energy with a thermoelectric module to produce electricity by Seebeck effect. This study was conducted to analyze characteristics of the thermoelectric module to apply for a heat energy harvesting device. Thermoelectric module composed of bismuth telluride was tested with various temperature conditions to analyze thermoelectric behavior of the module. Power generation efficiency of the thermoelectric module for various temperature condition was analysed with both experimental and theoretical methods. From the results, an optimum condition to harvest wasted heat energy with the thermoelectric module more efficiently was proposed.

Measurement of Pressure-Rise at No-Load in 800kV Model Interrupter (800kV 차단부의 무부하 압력상승 측정)

  • Chang, K.C.;Song, K.D.;Chung, J.K.;Song, W.P.;Kim, J.B.;Park, K.Y.;Shin, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.475-478
    • /
    • 1995
  • The variations of cold gas properties such as density, pressure, temperature and velocity which are dependent each other are closely related with the dielectric recovery of an interrupter. So, the pressure-rises at no-load in the puffer cylinder and in front of fixed arcing contact of 800kV model interrupter were measured experimentally using pressure transducers of strain gage type and semiconducting type, respectively. The maximum value of pressure-rise in the puffer cylinder increased almost linearly from 7.6 bar at the minimum operated pressure to 9.7 bar at the maximum operated pressure, while the pressure-rise in front of fixed arcing contact was independent with the operated pressure. The measured values will be utilized in verifying the self-developed cold flow analysis program and as an input of commercialized CFD program package.

  • PDF

Calculation of Pressure Rise in the Puffer Cylinder of EHV GCB Without Arc (무부하시의 초고압 GCB의 파퍼실린더 내부의 상승압력 계산)

  • Park, K.Y.;Song, K.D.;Choi, Y.K.;Shin, Y.J.;Song, W.P.;Kang, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1559-1561
    • /
    • 1994
  • At present, the principle of puffer action in high current interruption is adopted in almost of the EHV(Extra High Voltage) and UHV(Ultra High Voltage) GCB(Gas Circuit Breakers). The thermal interruption capability of these GCBs critically depends on the pressure rise in the puffer cylinder at current zero. The pressure rise in the puffer cylinder depends on the puffer cylinder volume, flow passage and leakage area in the interrupter, stroke curve etc. Recently commercial CFD(Computational Fluid Dynamics ) packages have been widely adopted to calculate the pressure distribution in the interrupter. However, there are still several problems with it, e.g. very expensive price, moving boundary problem, computation time, difficulty in using the package etc. Thus, the calculation of the puffer cylinder pressure in simple and relatively correct method is essential in early stage of GCB design. In these paper, the model ing technique and computed results for EHV class GCB (HICO, 145kV 40kA and 362kV 40kA GCB) are presented and compared with available measured results.

  • PDF

Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber

  • Usukawa, Ryutaro;Oda, Hiroshi;Ishikawa, Toshihiro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.610-614
    • /
    • 2016
  • Tyranno SA (SiC-polycrystalline fiber, Ube Industries Ltd.) shows excellent heat-resistance up to $2000^{\circ}C$ with relatively high mechanical strength. This fiber is produced by the conversion process from a raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber at very high temperatures over $1500^{\circ}C$ in argon. In this conversion process, the degradation reaction of the amorphous Si-Al-C-O fiber accompanied by a release of CO gas for obtaining a stoichiometric composition and the subsequent sintering of the degraded fiber proceed. Furthermore, vaporization of gaseous SiO, phase transformation and active diffusion of the components of the Si-Al-C-O fiber competitively occur. Of these changes, vaporization of the gaseous SiO during the conversion process results in an abnormal SiC-grain growth and also leads to the non-stoichiometric composition. However, using a modified Si-Al-C-O fiber with an oxygen-rich surface, vaporization of the gaseous SiO was effectively prevented, and then consequently a nearly stoichiometric SiC composition could be obtained.

Low Temperature Deposition of the $In_2O_3-SnO_2$, $SnO_2$ and $SiO_2$ on the Plastic Substrate by DC Magnetron Sputtering

  • Kim, Jin-Yeol;Kim, Eung-Ryeol;Lee, Jae-Ho;Kim, Soon-Sik
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.38-42
    • /
    • 2001
  • Thin films of $In_2O_3-SnO_2$(ITO), $SnO_2$, and $SiO_2$ were prepared on the PET substrate by DC magnetron roll sputtering. 135 nm thick ITO film on $SiO_2$/PET substrate has sheet resistance as low as 55 ${\Omega}/square$ and transmittance as high as 85%. $H_2O$gas permeation through the film was 0.35 g/$m^2$ in a day. These properties are enough on optical film for the plastic LCD substrate or touch panel. Both refractive index and sheet resistance of ITO was found to be very sensitive to $O_2$ flow rate. Oxygen flow conditions have been optimized from 4 to 5 SCCM at $10^{-3}$torr. It is also shown that both thickness of $SnO_2$ and refractive index of $SiO_2$ decrease as $O_2$ flow rate increases.

  • PDF

Explosion induced dynamic responses of blast wall on FPSO topside: Blast loading application methods

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Choi, Jae Woong;Ryu, Yong Hee;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.2
    • /
    • pp.135-148
    • /
    • 2017
  • Topside areas on an offshore oil and gas platform are highly susceptible to explosion. A blast wall on these areas plays an important role in preventing explosion damage and must withstand the expected explosion loads. The uniformly distributed loading condition, predicted by Explosion Risk Analyses (ERAs), has been applied in most of the previous analysis methods. However, analysis methods related to load conditions are inaccurate because the blast overpressure around the wall tends to be of low-level in the open area and high-level in the enclosed area. The main objectives of this paper are to study the effects of applying different load applications and compare the dynamic responses of the blast wall. To do so, various kinds of blast pressures were measured by Computational Fluid Dynamics (CFD) simulations on the target area. Nonlinear finite element analyses of the blast wall under two types of identified dynamic loadings were also conducted.

A Study on the Standard for the Safety Zone in the Domestic LNG TTS Bunkering (국내 LNG TTS 벙커링 시 안전구역 기준에 관한 연구)

  • Park, Sung-In;Roh, Jae Seung;Park, Jaehee;Park, Kyoungmin;Shin, Dongkyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.323-329
    • /
    • 2022
  • This paper suggests an example guideline of a safety zone layout for the domestic LNG Truck-To-Ship (TTS) bunkering. The safety zone is one of the controlled area in LNG bunkering and its layout is required as a fundamental safety barrier. While the international standard provides a layout methodology of the safety zone, its detail application is not user-friendly and only possible with a level of the process engineering. In the domestic case, the enforcement regulations are applied for LNG bunkering but the safety zone is not properly defined for TTS operation. Considerations are made for the intuitive approach of the safety zone layout and an example guideline is suggested for application in the domestic TTS bunkering. A technical background of the guideline is described and its applicability is demonstrated with regard to the characteristics of TTS bunkering. The findings of the study are summarized in association with a practical layout of the safety zone, contributing to the safety culture in the domestic LNG bunkering.

Study on The Status of Welded Parts According to The Types of Shielding Gas in TIG Welding (TIG용접에서 실드가스 종류의 변화에 따른 용접부의 변화상태 고찰)

  • Kim, Jin-Su;Kim, Bub-Hun;Lee, Chil-Soon;Kim, Yohng-jo;Park, Yong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.38-43
    • /
    • 2015
  • Tungsten inert gas (TIG) welding is commonly used in industries that require airtightness, watertightness, oiltightness, and precision. It is a non-consumable welding method that is commonly used for the welding of non-ferrous metals, but it can be used to weld most metals. The methods of TIG welding can be divided into three types. The first, manual welding is done directly on the metal by a welder with a torch. The second, semi-automatic welding, gets help from a material supplying machine, but it is conducted by a welder. Lastly, automated welding is conducted fully by a machine during its process and operation. Depending on the selection of electrode, the amount of heat that is applied to the base material and the electrode rod changes and makes the shape of welded parts different. A direct-current positive electrode was used for this study. Through the change of shielding gas type on a structural steel (SS-400) that is commonly used in industry, the composition and shape changes in welded parts were detected after welding. The heat-affected area, hardness value, and tensile strength were also identified through hardness testing and tensile testing. In this study, it was found that the higher hardness value of the heat-affected is, the weaker the tensile strength becomes.