Recent scaled-up onshore and offshore field production tests revealed that the expectancy to produce gas from the gas hydrate deposits is gradually increasing, recognizing its potentials as one of the future energy resources. The total produced gas was approximately $480m^3$ by the hot water circulation method for 6 days' operation in Mallik 2002 project in Canada. In Mallik 2006-2008 project, the gas was successfully produced stably by the depressurization method for 6 days, up to $13,000m^3$ cumulatively. The depressurization method applied in the Mallik test was revealed as an effective way to produce gas from gas hydrates. The Alaska North Slope field trial in 2012 to inject mixed gas of $CO_2$ and $N_2$ to exchange $CH_4$ was successfully completed for the first time to produce maximum $1,270m^3$ per day. The remarkable achievement is that Japan has completed first offshore production test in the Eastern Nankai Trough, and produced approximately $120,000m^3$ of methane by the depressurization method for 6 days in March 2013. The technical challenges and uncertainties obtained from Nankai Trough production test give Korea more considerations in the aspects of well completion, reservoir formation and seafloor stability, sand control, flow assurance, and etc., due to the different geological environments and geomechnical properties in Ulleung Basin in Korea.
We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.
가스하이드레이트(Gas Hydrate)는 특정한 온도와 압력조건하에서 물분자로 이루어진 공동 내로 메탄, 에탄, 프로판 등의 가스가 들어가 물분자와 상호 물리적 결합으로 형성된 외관상 얼음과 비슷한 고체 포유물로 자연상태에 존재하는 하이드레이트의 주 성분이 메탄(Methane)인 경우가 대부분인 까닭에 메탄 하이드레이트라고도 불린다. 표준상태에서 $1m^3$의 메탄하이드레이트는 $172m^3$의 메탄가스와 $0.8m^3$의 물로 분해된다. 그러나 메탄 하이드레이트를 인공적으로 만들경우 물과 가스의 반응율이 낮아 하이드레이트 생성시간이 상당히 길고 가스 용해율도 낮다. 따라서 하이드레이트를 빨리 만들며 가스충진율도 증가시킬 수 있는 방법으로 가스 흡착성이 있는 탄소나노튜브(Carbon Nano Tube)를 기계적 분산방법인 초음파 분산(Dispersion)과 화학적 개질에 의한 분산방법인 산화처리분산을 사용하여 탄소나노튜브와 산화탄화나노튜브를 순수한물에 분산하여 나노유체를 만들고, 나노유체와 메탄가스를 반응시켜 메탄하이드레이트를 생성시키는 실험을 수행하였다. 나노유체와 순수한물의 상평형(Phase Equilibrium)은 비슷하였으며, 탄소나노튜브를 0.0005Vol%를 분산한 나노유체와 순수한물의 메탄가스 소모량의 비교한결과 나노유체의 가스소모량의 순수한물보다 ${\Delta}T_{sub}$=0.5K에서는 2배 ${\Delta}T_{sub}$=9.7K에서는 1.6배 증가하였다. 또한 산화나노유체와 나노유체의 메탄 가스소모량은 산화나노유체가 0.01 ~ 0.02mol정도 높았으나 그 효과가 미미하였고, 교반기를 사용하여 RPM300으로 교반시켰을 경우 역시 메탄 가스소모량은 큰 차이가 없었으나 산화나노유체의 경우 메탄 가스소모량이 나노유체보다 급격히 증가함을 확인하였다.
$SF_6$(sulfur hexafluoride)는 뛰어난 단열 및 아크방지능력(arc-extinguishingproperty)으로 인해, 전력용 변압기의 절연가스와 반도체${\cdot}$액정용 플라즈마 CVD로의 cleaning gas, 주물공장 covering gas 등으로 사용되고 있다. 하지만, $SF_6$의 지구온난화지수(global warming potential)는 $CO_2$대비 23,900배가 높아 기후변화에 미치는 영향이 $CO_2$보다 훨씬 크고, 대기 중 분해되지 않고 잔존하는 기간이 $CH_4$ 10년, $CO_2$ 및 CFCs는 100년으로 추정되는데 반해, $SF_6$는 3,200년으로 연간방출양이 작더라도 오랜 기간 누적되면 그 파장이 클 것으로 사료된다. 대부분의 가스 하이드레이트(고상결정상태)는 고압, 저온에서 형성가능 하지만, 불화가스에 대해서는 쉽게 결정화가 일어난다. $SF_6$는 3$^{\circ}C$, 2기압에서 고밀도 고상화가 되기 때문에 여러 기체와 흔합되어 있는 경우 $SF_6$만을 압축된 고상 결정상태를 형성, $SF_6$를 회수, 정제할 수 있으므로 불화가스 분리${\cdot}$회수에 기술적, 경제적 효과를 기대할 수 있다. 본 연구에서는 하이드레이트 촉진제로서 계면활성제(promoter) 첨가에 따른 $SF_6$ 하이드레이트 형성 및 해리과정 실험을 통해 효율적인 $SF_6$ 저감에 관한 적용기술을 연구해 보았다.
화력발전이 많은 비중을 차지하는 전력생산 산업은 온실가스($CO_2$)의 최대 배출 원으로 알려져 있으며 증가하는 전력 수요 뿐 만 아니라 다가오는 기후변화협약에 대응하기 위하여 $CO_2$ 회수 및 공정 개선에 관한 연구가 많이 수행되고 있다. 특히 현재 연구되고 있는 전력분야의 대표적인 $CO_2$ 회수기술은 연소 후 포집(Post-combustion capture), 순산소 연소(Oxy-fuel combustion), 연소전 탈탄소화(Pre-combustion) 3가지로 구분된다. 이중 연소전 탈탄소화 기술은 석탄가스화복합발전(IGCC) 기술과 연계하여 $CO_2$를 회수할 수 있는 방법으로 가스화 된 석탄가스에 Water-Gas Shift 반응과, $CO_2$ 분리로 얻어진 탈 탄소 연료를 통해서 전력을 생산한다. 이 기술의 핵심은 생성된 $CO_2/H_2$ 복합가스로부터 $CO_2$를 분리하는 공정으로 차세대 회수 기술로는 Membrance Reactor, SOFC, Oxygen Ion Transfer Membrane(OTM), 그리고 가스 하이드레이트가 있다. 이중 가스 하이드레이트는 $CO_2$의 회수 뿐 만 아니라 처리 기술에도 적용 가능하지만 우리나라에는 이에 관한 기술이 전무한 형편이다. 본 연구에서는 가스 하이드레이트 형성원리를 이용하여 정온 정압 조건에서 $CO_2/H_2$ 하이드레이트를 제조하였으며 특히, 하이드레이트 형성 촉진제인 THF(Tetrahydrofuran)를 첨가하여 THF 농도에 따른 상평형 및 속도론 실험을 수행 하였다. 이러한 연구는 연소전 탄소화 기술에서의 $CO_2$ 회수 분리에 대한 핵심 연구임과 동시에 탄소배출권 규제에 실질적인 기여를 할 수 있을 것으로 사료된다.
In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4) clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.
자연 상태에서의 가스하이드레이트의 존재는 물의 빙점보다 높은 온도에서 가스 수송관이 막히는 사고가 관내에 생성된 하이드레이트에 의한 것으로 규명된 이후영구동토지역이나 심해저에 부존되어 있는 막대한 매장량으로 인해 매우 활발한 연구가 최근에 진행되고 있다. 가스하이드레이트는 수분의 량에 비해 대량의 가스를 함유하므로 인위적인 가스하이드레이트를 제조하기 위하여 여러 가지 연구 중 하이드레이트 반응을 촉진하는 촉진제(promoter)와 생성을 억제하는 억제제(inhibitor)를 찾는 연구가 활발히 이루어지고 있다. 계면활성제와 고분자물질이 이들의 다양한 첨가제로 현제 사용되고 있다. 이러한 연구에서 메탄가스하이드레이트 형성에 영향을 미치는 대상물질로 선택한 DME(Dimethane Ether)는 산소 함유율이 34.8wt%인 함산소연료로 최근 신에너지로 부상하고 있으며, 해외 가스전 개발과 맞물려서 상용화단계에 들어와 있다. DME의 물리화학적인 특성으로는 상온의 온도에서 약5기압의 압력으로 액화 시킬 수 있다. 마취성이 강한 디에틸에테르와는 달리 마취성이 없을 뿐만 아니라 인체에 무해한 무색기체로 세탄가가 60가까이되어 경유(세탄가 55) 대체연료로 내연기관의 실증사업이 진행되고 있다. 이러한 특성을 갖고 있는 DME가 메탄가스 하이드레이트 생성에는 어떤 영향을 미치는지를 본 연구에서는 실험을 통해서 분석을 수행하였다. 실험과정에는 세 단계로 구분하여 진행하였는데 첫 번째 단계에서는 메탄가스만으로 하이드레이트 생성조건을 실험분석하였고, 두 번째 단계에서는 DME가스를 먼저 주입한후 동일 온도에서 메탄가스를 주입시켜 하이드레이트 생성 압력을 실험측정하였다. 마지막 단계에서는 DME가스를 약 두 배 정도 많이 주입한 후 동일 온도에서 메탄가스를 주입하여 하이드레이트 생성 압력을 측정하였디. 이러한 단계별 과정을 다소 온화한 $-5^{\circ}C{\sim}4^{\circ}C$의 온도 범위에서 반복적으로 수행하였다. 실험결과에서는 메탄만의 하이드레이트 형성보다 빙점($0^{\circ}C$) 이하의 온도 범위에서는 DME가 메탄하이드레이트 형성에 촉진제 역할을 하였고, 빙점 이상의 온도에서는 억제제의 역할을 하는 것으로 측정되었다. 또한 첨가된 DME의 양에 따라 촉진제의 역할과 억제제의 역할에 확연한 차이를 보였다. 추후 실험에서는 좀더 넓은 농도, 온도 및 압력범위에서 재현성 실험을 추가로 수행할 것도 제안한다.
TBAB (tetra-n-butyl ammonium bromide) forms a semi-clathrate with water under atmospheric pressure conditions and recently has attracted great attention due to its usage as a thermodynamic promoter in gas storage and separation process using gas hydrate formation. In this study, we measured the three-phase (hydrate (H) - liquid water ($L_{w}$)-vapor (V)) equilibria of the ternary $CH_{4}$+TBAB+water and $CO_{2}$+TBAB+water mixtures at the TBAB concentrations of 5 and 32 wt% to investigate promoting characteristics of TBAB. The greater promotion effect of TBAB was observed at 32 wt% than at 5 wt%. This result was in good agreement with that from pure TBAB semi-clathrate phase diagram under atmospheric pressure conditions. Through $^{13}C$ NMR analysis of the $CH_{4}$+TBAB semi-clathrate, it was found that $CH_{4}$ molecules are enclathrated in the cages of the double semi-clathrate and the position of resonance peak from encaged $CH_{4}$ molocules in the double semi-clathrate is the same as that from encaged $CH_{4}$ molocules in the pure $CH_{4}$ hydrate of structure I.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.10
no.2
/
pp.125-132
/
2012
The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step ($80{\rightarrow}150{\rightarrow}230^{\circ}C$) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.
Deep sea core samples were taken in the southwestern part of the Ulleung Basin in order to characterize the properties of shallow gases in the sediment. Amount of shallow gases in the sediments were calculated by head space techniques, and chemical and isotopic compositions of hydrocarbon gases were analyzed. Geochemical analyses were carried out on the gas bearing sediments to find out relationship between natural gas contents and organic characteristics of the sediments. Seismic characteristics of shallow gases in the sediments were also examined in this study. The amount of the hydrocarbon gases in the sediments range from 0.01% to 11.25%. Calculation of volume of gas per volume of wet sediment varies from 0.1 to 82.0 ml HC/L wet sediment. Methane consists 98% of the total hydrocarbon gases except for two samples. Based on the methane content and isotopic composition$(\delta^{13}c)$: -94.31$\textperthousand$~-55.5$\textperthousand$), the hydrocarbon gases from the sediments are generated from bacterial activities of methanogenic microbes. Contents of hydrocarbon gases are variable from site to site. Volume of shallow gases in the sediments shows no apparent trends vs. either characteristics of organic matter or particle sizes of the sediments. Gas concentration is high in the area of seismic anomalies such as blanking zone or chimney structures in the section. Physicochemically the pore water and the formation water systems are saturated with gases in these areas. Concentration of hydrocarbon gases in the sediments in these area shows favorable condition for generation of gas hydrate, as far as the other conditions are satisfied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.