• 제목/요약/키워드: Gas Hydrate

검색결과 330건 처리시간 0.038초

동해 울릉분지 가스하이드레이트 형성에 관한 지구물리해석 (Geophysical study about gas hydrate formation in the Ulleung Basin, East Sea)

  • 강동효;류병재;유동근;박장준;구남형;김원식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.680-681
    • /
    • 2009
  • On the basis of seismic interpretation, seismic indicators of gas hydrate and associated gas such as bottom simulating reflector (BSR), acoustic blanking, column structure, gas seepage, enhanced reflection were identified in the Ulleung Basin. Fractures, faults, sandy layer could be the migration pathways transporting fluid and gas to stability zone. The formation of gas hydrate in the Ulleung Basin include: (1) nodules, veins, layers in muddy sediments and disseminated forms in sandy layer within localized column structure, (2) disseminated forms in sandy layer, and (3) disseminated forms in sandy layer just above BSR.

  • PDF

CSMHYD를 이용한 혼합가스 하이드레이트의 상평형에 대한 연구 (A Study on the Phase Equilibrium Conditions of Mixture Gas Hydrates using CSMHYD)

  • 서향민;박윤범;천원기;김남진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.585-589
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production, Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% Nacl. The results show that Nacl acts as a inhibitor, but help gases such as ethan, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

  • PDF

가스 하이드레이트 형성 원리를 이용한 연소전 탈탄소화 연구 (Pre-Combustion Capture of Carbon Dioxide Using Principles of Gas Hydrate Formation)

  • 이현주;이주동;김양도
    • 한국재료학회지
    • /
    • 제18권12호
    • /
    • pp.650-654
    • /
    • 2008
  • The emission of carbon dioxide from the burning of fossil fuels has been identified as a major contributor to green house emissions and subsequent global warming and climate changes. For these reasons, it is necessary to separate and recover $CO_2$ gas. A new process based on gas hydrate crystallization is proposed for the $CO_2$ separation/recovery of the gas mixture. In this study, gas hydrate from $CO_2/H_2$ gas mixtures was formed in a semi-batch stirred vessel at a constant pressure and temperature. This mixture is of interest to $CO_2$ separation and recovery in Integrated Coal Gasification (IGCC) plants. The impact of tetrahydrofuran (THF) on hydrate formation from the $CO_2/H_2$ was observed. The addition of THF not only reduced the equilibrium formation conditions significantly but also helped ease the formation of hydrates. This study illustrates the concept and provides the basic operations of the separation/recovery of $CO_2$ (pre-combustion capture) from a fuel gas ($CO_2/H_2$) mixture.

가스 하이드레이트의 분광학적 연구 (Spectroscopic Studies of Gas Hydrates)

  • 김도연;이흔;서유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.615-617
    • /
    • 2005
  • [ $^{13}C$ ] NMR spectra were obtained for pure $CH_4$ hydrate in order to identify hydrate structure and cage occupancy of guest molecule. The NMR technique can provide both qualitative and quantitative hydrate characteristics. The moles of methane captured into pure $CH_4$ hydrate per mole of water were found to be similar to the full occupancy value. The overall results drawn from this study can be usefully applied to storage and transportation of natural gas.

  • PDF

메탄 하이드레이트 생산 묘사를 위한 수치도구의 개발 (Development of a Numerical Simulator for Methane-hydrate Production)

  • 신호성
    • 한국지반공학회논문집
    • /
    • 제30권9호
    • /
    • pp.67-75
    • /
    • 2014
  • 방대한 저장량으로 차세대 에너지원으로 평가받는 메탄가스 하이드레이트는 생산과정에서 유발될 수 있는 문제를 최소화하고 최적의 생산조건을 선정하기 위한 하이드레이트 포함한 다공질 재료의 THM 현상에 대한 프로그램의 개발이 절실하다. 기존의 해석 프로그램들은 국제공동연구를 통하여 프로그램들간의 상호 비교검증을 진행하고 있으나, 예측값의 불일치와 수렴성에 문제가 있는 것으로 나타났다. 본 논문에서는 다공질 재료내 메탄 하이드레이트의 해리 현상을 해석할 수 있는 fully coupled THM 유한요소 프로그램을 개발하였다. Methane hydrate, soil, water, 및 methane gas의 질량보존의 법칙, 에너지 보존의 법칙, 그리고 힘평형 방정식으로부터 지배방정식을 유도하였다. 다양한 주변수들의 조합을 통하여 주변수를 변위, 가스 포화도, 유체압, 온도, 하이드레이트 포화도로 선택하였으며, 상변화 전영역에서 해석이 가능하도록 하였다. 하이드레이트의 해리를 예측하는 모델은 kinetic model을 이용하였다. 개발된 THM 유한요소 프로그램을 이용하여 메탄가스 생산에 관한 Masuda의 실내 모형실험 결과와 비교적 분석을 수행하였으며, 해의 수렴성과 안정성을 확인할 수 있었다.

천연가스 고체화 수송을 위한 메탄 하이드레이트 충진율 증대에 대한 실험적 연구 (Experimental Investigation on the Enhancement of Methane Hydrate Formation in the Solid Transportation of Natural Gas)

  • 김남진;정재성;김종보
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.863-870
    • /
    • 2002
  • Fossil fuels have been depleted gradually and new energy resource which can solve this shortage is needed now. Methane hydrate, non-polluting new energy resource, satisfies this requirement and considered the precious resource prevent the global warming. Fortunately, there are abundant resources of methane hydrate distribute in the earth widely, so developing the techniques that can use these gases effectively is fully valuable. the work presented here is to develop the skill which can transport and store methane hydrate. As a first step, the equilibrium point experiment has been carried out by increasing temperatures in the cell at fixed pressures. The influence of gas consumption rates under variable degree of subcooling, stirring and water injection has been investigated formation to find out kinetic characteristics of the hydrate. The results of present investigation show that the enhancements of the hydrate formation in terms of the gas/water ratio are closely related to operational pressure, temperature, degrees of subcooling, stirring rate, and water injection.

n-Pentane & n-Hexane as Coguests of sH Hydrates in the Mixture with 2,2-Dimethylbutane and Methane

  • 이종원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.58-61
    • /
    • 2006
  • n-Pentane and n-hexane, previously regarded as non-hydrate formers, are found to form structure H hydrate in mixtures with 2,2-dimethylbutane. Even though they are thought to be too large to fit into the largest cage of the structure H hydrate, powder XRD and NMR measurements show that they form gas hydrates in mixtures with other sH hydrate former. These findings are of fundamental interest and also will impact the composition and location of natural gas hydrates and their potential as global energy resource and climate change materials.

  • PDF

가스하이드레이트 생산성 분석에 관한 실험 연구 (An Experimental Study on the Gas Productivity from Gas Hydrate)

  • 박승수;한정민;권옥배;신창훈;이정환
    • 신재생에너지
    • /
    • 제2권3호
    • /
    • pp.37-41
    • /
    • 2006
  • In this study, an experimental apparatus has been designed and set up to analyze the dissociating phenomena of hydrate in porous rock. Experiments with the depressurization scheme have been carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water. From the experiments, it has been provided a determination of volume of gas produced and the progress of the dissociation front, as a function of time when hydrate is depressurized. Also, it has been investigated the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production

  • PDF

가스하이드레이트 생산성 분석에 관한 실험 연구 (An Experimental Study on the Gas Productivity from Gas Hydrate)

  • 박승수;한정민;권옥배;신창훈;이정환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.412-414
    • /
    • 2006
  • In this study, an experimental apparatus has been designed and set up to analyze the dissociating phenomena of hydrate in porous rock. Experiments with the depressurization ion scheme have been carried out to investigate the dissociation characteristics of methane hydrates and the productivities of dissociated gas and water. From the experiments, it has been provided a determination of volume of gas produced and the progress of the dissociation front, as a function of time when hydrate is depressurized. Also, it has been investigated the flowing behavior of the dissociated gas and water in porous rock and the efficiency of the production

  • PDF

가스 하이드레이트 형성 원리를 이용한 SF6 처리 기술에 관한 연구 (Effects of Surfactant on SF6 Gas Hydrate Formation Rate)

  • 이보람;이현주;김신호;이주동;김양도
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.73-76
    • /
    • 2008
  • [ $SF_6$ ] gas has been widely used as an insulating, cleaning and covering gas due to its outstanding insulating feature and because of its inert properties. However, the global warming potential of $SF_6$ gas is extremely high relative to typical global warming gases such as $CO_2$, CFCs, and $CH_4$. For these reasons, it is necessary to separate and collect waste $SF_6$ gas. In this study, the effects of a surfactant (Tween) on the formation rate of $SF_6$ gas hydrates were investigated. The $SF_6$ gas hydrate formation rate increased with the addition of Tween and showed a nearly 6.5 times faster hydrate formation rate with an addition of 0.2 wt.% Tween compared to an addition of pure water. This is believed to be due to the increased solubility of $SF_6$ gas with the addition of the surfactant. It was also found that $SF_6$ gas hydrate in the surfactant solution showed two-stage hydrate formation rates with a formation rate that increased rapidly in the 2nd stage.