• Title/Summary/Keyword: Gas Generator

Search Result 756, Processing Time 0.029 seconds

A Study on Analysis of the Hydrogen-Oxygen Gas Generator Using Pulse Power Supply (펄스전원에 의한 수산화가스 발생기에 관한 연구)

  • 이정민;강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.5
    • /
    • pp.377-385
    • /
    • 2001
  • The mixed gas of Hydrogen and Oxygen is gained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has better characteristics in the field of economy, efficiency of energy, and environmental intimacy than acetylene gas and LPG used for gas welding machine. So several studies of this gas are actively in progress nowadays. The object of this study is the optimization of power condition in the side of electricity for the Hydrogen-Oxygen gas generator, Firstly chemical analysis of electrolysis is conducted, and the relation of electrical energy and chemical energy is quantitatively investigated through Faraday's laws of electrolysis. After that, pulse power supply is designed for basic experiment which could be applied to the analysis of Hydrogen-Oxygen gas generator. In the basis of above steps, comparison and analysis of Hydrogen-Oxygen gas generator was conducted as variable frequency using pulse Power supply.

  • PDF

A study on the bipolar plate of electrolytic cell of hydrogen gas generation system by numerical system (수소가스발생 장치의 전해조의 분리판에 관한 전사모사 연구)

  • Jo, Hyeon-Hak;Lee, Sang-Ho;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This study is focused on the modeling of two phase fluid flow system in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

Development and Acceptance Test Results of 75-tonf Class Liquid Rocket Engine Gas Generator (75톤급 가스발생기 개발시험 및 수락시험 결과)

  • Lim, Byoungjik;Kim, Munki;Kang, Donghyuk;Kim, Hyeon-Jun;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.55-65
    • /
    • 2020
  • In this paper, development and acceptance test results of 75-tonf class liquid rocket engine gas generators are described. Up to now, more than 330 times and cumulative time of 7,000 seconds gas generator autonomous tests have been carried out with 44 gas generator models. Through the tests it was verified that 75 tonf gas generator shows very reliable and reproducible characteristics in terms of chamber pressure, combustion efficiency, pressure loss, combustion stability, burnt gas temperature, and etc. 5 gas generators which are the last series of 75 tonf gas generator for the Korea Space Launch Vehicle II, will be manufactured until end of 2019 and their acceptance tests will be executed at the first half of 2020.

Study on the Characteristics of Turbopump+Gas generator Closed-loop coupled test (터보펌프+가스발생기 폐회로 연계시험 특성 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.38-41
    • /
    • 2009
  • For the technology development of LOx/kerosene liquid rocket engine, turbopump-gas generator closed-loop coupled tests using 30tonf main engine components such as turbopump and gas generator except combustion chamber are performed. In the engine system operation environment, simulating combustion chamber by flow control units, the chill-down procedure, startup characteristics, nominal operability and smooth shutdown of turbopump+gas generator closed-loop coupled Test Plant are successfully confirmed. The serviceability of the turbopump and gas generator are evaluated. The feed-back control system for the turbopump rotational speed and gas generator mixture ratio are also verified. The results of closed-loop coupled test will be used as the technology development for the liquid rocket engine.

  • PDF

Optimal Design and Combustion Analysis of Fuel-rich Gas Generator for Liquid Rocket Engine Based on RP-1 fuel (RP-1연료를 사용한 농후연소 가스발생기의 최적설계 및 연소해석)

  • 권순탁;이창진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 101on1 in thrust with RP-1/LOx combination. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching in turbopump system. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. The configuration of the gas generator and the condition for performance which can maximize the objective function were determined and found to meet the design constraints. Also, the combustion analysis was conducted to evaluate the performance of designed chamber and injector of gas generator. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.

  • PDF

Optimal Design of Fuel-Rich Gas Generator for Liquid Rocket Engine (액체로켓의 농후 가스발생기 최적설계)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.91-96
    • /
    • 2004
  • An optimal design of the gas generator for Liquid Rocket Engine (LRE) was conducted. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton in thrust with RP-1/LOx propellant. The optimal design was done for maximizing specific impulse of thrust chamber with constraints of combustion temperature and for matching the power requirement of turbopump system. Design variables are total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design provide length, diameter, and contraction ratio of gas generator. And the operational condition predicted by design code with resulting configuration was found to maximize the objective function and to meet the design constraints. The results of optimal design will be tested and verified with combustion experiments.

A study on the channel design of bipolar plate of electrolytic cell of hydrogen gas generation system by flow dynamic simulation (수소가스발생 장치의 전해조 분라판의 유로설계에 관한 전산모사 연구)

  • Jo, Hyeon-Hak;Jang, Bong-Jae;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.152-156
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

Numerical study on the reactive flow in Gas Generator (가스발생기 내부 유동 특성에 관한 수치 연구)

  • Yu Jungmin;Lee Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.198-202
    • /
    • 2005
  • Gas generator is the equipment to produce high enthalpy gas used to generate sufficient power to operate turbine and pump system for propellant feeding in liquid rocket engine. Since the limit in operating temperature is imposed due to turbine blade, the gas generator has to be operated at the temperature far below stoichiometric maintaining fuel rich combustion. In this research, fundamental study was performed to understand the non-equilibrium combustion process with in-house code and CFD-ACE as well.

  • PDF

Generating efficiency and NOx emissions of a gas engine generator fuelled with biogas (바이오가스를 이용한 가스엔진 발전기의 발전효율 및 질소산화물 배출 특성)

  • Lee, Kyung-Taek;Cha, Hyo-Seok;Chun, Kwang-Min;Song, Soon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.306-309
    • /
    • 2009
  • Concern for new and renewable energy is growing globally. Biogas is one of the alternative fuels and consists of methane and carbon dioxide. It is difficult to achieve efficient engine operation due to a lower heating value of biogas compared to that of natural gas. In order to improve generating efficiency, finding an optimum point of ignition timing and excess air ratio is important. From this fact, generating efficiency and pollutant emissions of 2300cc gas engine generator operated by biogas as functions of ignition timings and excess air ratios were investigated in this study. As a test result, the generating efficiency of the gas engine generator using biogas was 27.34 % in the condition of the BTDC of $16^{\circ}$ and the excess air ratio of 1.4.

  • PDF

Hot-firing Tests of Afterburning Device for a Gas Generator (가스발생기용 후연소 장치 시험 결과)

  • Kim, Mun-Ki;Lim, Byoung-Jik;Kang, Dong-Hyuk;Ahn, Kyu-Bok;Kim, Jong-Gyu;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.79-82
    • /
    • 2011
  • An afterburning device was developed to safely treat unburnt gases of fuel-rich condition discharged by a gas generator. Hot-firing tests for a subscale gas generator were carried out to investigate operation and safety of the afterburning device. When supplying additional liquid oxygen, the length of the afterburning flame was significantly reduced.

  • PDF