• Title/Summary/Keyword: Gas Foil

Search Result 93, Processing Time 0.024 seconds

Performance Predictions of Gas Foil Journal Bearing with Shim Foils (심포일을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2018
  • This paper presents a computational model of a gas foil journal bearing with shim foils between the top foil and bumps, and predicts its static and dynamic performance. The analysis takes the previously developed simple elastic foundation model for the top foil-bump structure and advances it by adding foil models for the "shim foil" and "outer top foil." The outer top foil is installed between the (inner) top foil and bumps, and the shim foil is installed between the inner top foil and outer top foil. Both the inner and outer top foils have an arc length of $360^{\circ}$, but the arc length of the shim foil is shorter, which causes a ramp near its leading edge in the bearing clearance profile. The Reynolds equation for isothermal and isoviscous ideal gas solves the hydrodynamic pressure that develops within the bearing clearance with preloads due to the ramp. The centerline pressure and film thickness predictions show that the shim foil mitigates the peak pressure occurring at the loading direction, and broadens the positive pressure as well as minimum film thickness zones except for the shortest shim foil arc length of $180^{\circ}$. In general, the shim foil decreases the journal eccentricity, and increases the power loss, direct stiffness, and damping coefficients. As the shim foil arc length increases, the journal eccentricity decreases while the attitude angle, minimum film thickness, and direct stiffness/damping coefficients in the horizontal direction increase.

Application of Foil Gas Bearing to the 38kW, 100000 RPM Class High Speed Motor (38kW, 100000 RPM 고속모터에 대한 포일 가스 베어링 응용 개발)

  • Kim, Kyeong-Su;Park, Ki-Cheol;Kim, Seung-Woo;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.127-131
    • /
    • 2003
  • Foil gas bearing is a noncontact bearing operated by coupled interaction between hydrodynamic pressure of viscous fluid and elastic deformation of foil structure. It has valuable advantages, such as low power loss, long life, oilless environment and low vibration, over conventional bearings for the high speed applications. A high speed BLDC motor adopting the foil bearing has been developed. It is designed to have 38㎾ power at 100,000 RPM for a cryogenic cooler whose operating fluid is neon. In this paper, structural development details especially for the foil gas bearing and rotordynamics are presented.

  • PDF

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

Analysis of Three-Pad Gas Foil Journal Bearing for Increasing Mechanical Preloads (3 패드 가스 포일 저널 베어링의 프리로드 증가에 따른 성능 해석)

  • Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, a three-pad gas foil journal bearing with a diameter of 40 mm and an axial length of 35 mm was modeled to predict the static and dynamic performances with regard to an increasing mechanical preload. The Reynolds equation for an isothermal and isoviscous ideal gas was coupled with a simple elastic foundation foil model to calculate the hydrodynamic pressure solution iteratively. In the prediction results, the journal eccentricity, journal attitude angle, and minimum film thickness decreased, but the friction torque increased with the preload. A quick comparison implied a lower load capacity but higher stability for a three-pad gas foil bearing compared to a one-pad gas foil journal bearing. The direct stiffness coefficients increased with the preload, but the cross-coupled stiffness coefficients decreased. The direct damping coefficient increased in the horizontal direction but decreased in the vertical direction as the preload increased. These model predictions will be useful as a benchmark against experimental test data.

Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings (범프포일베어링의 탄성유체윤활 특성)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

Performance Analysis of Gas Foil Journal & Thrust Bearings (가스포일 저널베어링 및 스러스트베어링의 성능해석)

  • Kim Young-Cheol;Han Jeong-Wan;Kim Kyung-Woong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-272
    • /
    • 2003
  • This paper presents a performance analysis model of corrugated bump foil bearings. The analyses for not only 1st generation bump foil journal bearings but also bump foil thrust bearings are performed. Static performances such as load capacity, attitude angle, pressure distribution, foil deflection, and film thickness are accurately estimated by using soft elasto-hydrodynamic analysis technique and finite difference numerical method. Also dynamic performances such as stiffness coefficients and damping coefficients are estimated by perturbation method. The analysis technique may be appliable to rotordynamic analysis, stability analysis, and optimized bearing design.

  • PDF

Heat Transfer Coefficient, Heat Release and Gas Hazard Tests for Expanded Polystyrene Heat Insulating Materials with Aluminum Foil (알루미늄 호일 부착 발포 폴리스티렌 단열재의 열전도율, 열방출시험 및 가스 유해성 시험)

  • Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.15-19
    • /
    • 2018
  • The purpose of this study is to enhance heat insulation effect and to decrease fire hazard by attaching aluminum foil to expanded polystyrene, which is mainly used for insulating materials, to have fire retardant. The result of the test confirmed that the insulating materials, expanded polystyrene of $10kg/m^3$ and $14kg/m^3$ of density attached aluminum foil on both sides, showed 12%, 14% of improved heat transfer coefficient respectively compared to existing expanded polystyrene of the same density. Besides, they met all the standards for the testing of heat release and gas hazard. On the other hand, the one made of general expanded polystyrene could not meet the standards of the heat release test and the gas hazard test.

The Static and Dynamic Performance Analyses of Air Foil Journal Bearing for Various Bump Foil Stiffness (범프포일 강성변화에 대한 포일저널 베어링의 정적, 동적 성능해석)

  • 김경웅;이동현;김영철
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • This paper presents the effects of the bump foil stiffness on the static and dynamic performance of the foil journal bearings. Reynolds equation is used for the static and dynamic performance analyses. To consider the deflection of top foil the top foil is modeled as a elastic beam and the bump foil is modeled as a spring. So in the static performance analysis the load capacity is compared to the various bump foil stiffness and in the dynamic performance analysis the trajectory of journal center is compared to the various bump foil stiffness.

Stability Improvement of the Ultra-High Speed Micro Turbocharger Supported by Air Foil Bearings (공기 포일 베어링으로 지지되는 초고속 마이크로 터보차져의 구동 안정성 향상에 관한 연구)

  • Kwak, Yong-Suk;Kim, Chang-Ho;Chung, Jin-Taek;Lee, Yong-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.541-548
    • /
    • 2008
  • To improve the operational stability of the 100 Watts class Micro Gas Turbine, the air foil bearing with additional damping material has been investigated. The key of structure is that a viscoelastic material is coated under the top foil. The compliant foil journal bearing and thrust bearing are designed to withstand high load of vibrations at the operational speed 870,000 rpm. Test is executed in room temperature. Rotor has stably operated above 480,000 rpm. It is over 55% of the designed speed 870,000 rpm. Synchronous and subsynchronous vibrations are both well controlled. Vibration amplitude diminished over 50%. With the help of increased damping resulting from the viscoelasticity, the rotor stability of Micro turbocharger has been improved.

Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows (난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.