• Title/Summary/Keyword: Gas Fluidized Bed

Search Result 275, Processing Time 0.026 seconds

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process (연속식 2단 기포 유동층 공정의 운전특성)

  • Youn, Pil-Sang;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.

Performance Test of a Multi-riser Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 다관형 순환유동층 열교환기 성능실험)

  • 전용두;이금배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.273-279
    • /
    • 2004
  • A lab-scale fluidized bed heat exchanger for waste gas heat recovery is devised and tested. Compared to our previous works on fluidized bed type system with a single riser, the present heat exchanger system is featured by its multiple (four) risers to handle increased amount of exhaust gas. Particles are introduced to the main hot gas stream alongside the pipe circumference near riser inlets. The heat exchanger performance and pressure drop are evaluated through experiments for the present gas-to-water heat exchanger system.

A Study on Combustion & Flue Gas Characteristics of Coal at Pressurized Fluidized Bed Combustor (가압유동층연소로에서 석탄의 연소 및 배가스특성 연구)

  • Han, Keun-Hee;Oh, Dong-Jin;Ryu, Jung-In;Jin, Gyoung-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.677-686
    • /
    • 2000
  • The characteristics of combustion and of emissions in pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm, and the combustion temperatures are set to 850, 900, and $950^{\circ}C$. The gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The coal used in the experiment is Shenhwa coal in China. All experiments are executed at 2m bed height. Consequently, NOx & $N_2O$ concentration in the flue gas is increased with incresing excess air ratio but $SO_2$ concentration is decreased with incresing excess air ratio. CO concentration is maintained below 100ppm at over 15% of excess air ratio.

The minimum fluidized velocity in fluidizing combustion bed of uniform particle size distribution system. (균일입자계 유동층연소로의 최소유동화 속도에 관한 연구)

  • 조병렬;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • The pressure fluctuations in a gas-solid fluidized bed has been analysed using s statistical method interpreting fluidized 냥d behavior. The performing statistical a analysis of the pressure fluctuations in a fluidized bed of 6.7cm-ID. using uniform p particle size of 115 to $1015{\mu}m$ in diameter. The fluidized gas used air(velocity 0.1~1.2m/sec) at settled bed height to diameter ratios which is LlD=l.O. Then, the pressure fluctuations measured by DPT(differantial pressure transducer). The measuring characteristic values of pressure fluctuation were the mean value and standard value, and also, it has been found that the standard deviation of the pressure fluctuations can be effectively used to predict minimum fluidizing velocity and to explain the fluidized phenomena.

  • PDF

A Comparative Study on Treatment Efficiencies by Anaerobic Packed and Fluidized-bed Biofilm of Livestock Wastewater (축산폐수의 혐기성 충전층과 유동층 생물막법에 의한 처리효율의 비교연구)

  • 김은호;박현건;장성호
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 1998
  • This study was conducted in order to evaluate the treatment efficiencies of anaerobic packed and fluidized-bed biofilm and to investigate applicability in treating livestock wastewater. Biocarbonate alkalinity(BA) and volatile fatty acid(VFA) were about 3,230-3,270 mg/l, 3,790-3,126 mg/l(as CaCO$_3$) and 224-402 mg/l, 141-387 mg/l(as CH$_3$COOH), and VFA/BA ratio was about 0.069~0.12, 0.045-0.12 in packed and fluidized-bed biofilm. When COD loading rate was 6.0 kg COD/$m^3\cdot$ day in packed and fluidized-bed biofilm, methane gas production were 3.23 l/day and 4.38 l/day, respectively. In the same COD loading rate, methane gas production volumes per kg COD removal were 0.25 m$^3$ CH$_4$/kg COD$_{rm}$ and $0.28 m^3 CH_4/kg COD^{rm}$, respectively. At this time, it could be estimated that fluidized-bed biofilm was more high. In case of HRT 0.94 day(6.0 kg COD/$m^3\cdot$ day) and 11 day(0.5 kg COD/$m^3\cdot$ day), packed-bed biofilm showed 59% and 81% COD removal efficiency, respectively. While fluidized-bed biofilm showed 72% and 85% removal efficiency, respectively. It was showed that fluidized-bed biofilm was more efficient. Packed-bed biofilm was higher than fluidized in treatment efficiencies of organic matters, but required continuous treatment using combined system, because it was very exceeded over an environmental standard solidified from '96 year. In operating fluidized-bed biofilm, if farm house consider high power cost according to high circulation ratio in an economic point of view, it would have an effect that farm house use packed-bed biofilm as combined system in treating livestock wastewater.

  • PDF

Hydrodynamic Characteristics in a Hexagonal Inverse Fluidized Bed (장방형 역유동층의 동력학적 특성)

  • 박영식;안갑환
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.93-102
    • /
    • 1996
  • Hydrodynamic characteristics such as gas holdup, liquid circulation velocity and bed expansion in a hexagonal inverse fluidized bed were investigated using air-water system by changing the ratio ($A_d$/$A_r$) of cross-sectional area between the riser and the downcomer, the liquid level($H_1$/H), and the superficial gas velocity($U_g$). The gas holdup and the liquid circulation velocity were steadily increased with the superficial gas velocity increasing, but at high superficial gas velocity, some of gas bubbles were carried over to a downcomer and circulated through the column. When the superficial gas velocity was high, the $A_d$/$A_r$ ratio in the range of 1 to 2.4 did not affect the liquid circulation velocity, but the maximum bed expansion was obtained at $A_d$/$A_r$ ratio of 1.25. The liquid circulation velocity was expressed as a model equation below with variables of the cross-sectional area ratio($A_d$/$A_r$) between riser to downcomer, the liquid level($H_1$/H), the superficial gas velocity($U_g$), the sparser height[(H-$H_s$)/H], and the draft Plate level($H_b$/H). $U_{ld}$ = 11.62U_g^{0.75}$${(\frac{H_1}{H})}^{10.30}$${(\frac{A_d}{A_r})}^{-0.52}$${(\frac({H-H_s}{H})}^{0.91}$${(\frac{H_b}{H})}^{0.13}$

  • PDF

Reaction Characteristics of WGS Catalyst for SEWGS Process in a Pressurized Fluidized Bed Reactor (가압 유동층 반응기에서 SEWGS 공정을 위한 WGS 촉매의 반응특성)

  • Kim, Ha-Na;Lee, Dong-Ho;Lee, Seung-Yong;Hwang, Taek-Sung;Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.337-345
    • /
    • 2012
  • To check effects of operating variables on reaction characteristics of WGS catalyst for SEWGS process, water gas shift reaction tests were carried out in a pressurized fluidized bed reactor using commercial WGS catalyst and sand(as a substitute for $CO_2$ absorbent) as bed materials. Simulated syngas(mixed with $N_2$) was used as a reactant gas. Operating temperature was $210^{\circ}C$ and operating pressure was 20 bar. WGS catalyst content, steam/CO ratio, gas velocity, and syngas concentration were considered as experimental variables. CO conversion increased as the catalyst content and steam/CO ratio increased. CO conversion at fluidized bed condition was higher than that of fixed bed condition. However, CO conversion were maintained almost same value within the fluidized bed condition. CO conversion decreased as the syngas concentration increased. The optimum operation condition was confirmed and long time water gas shift reaction test up to 24 hours at the optimum operating conditions was carried out.

A study on the fluidization of centrifugal fluidized bed for reduction of exhaust gas from diesel powered vehicle (경유차 배기가스 저감용 원심유동층 촉매반응장치의 유동특성에 관한 연구)

  • Rhee, Kwan-Seok;Kum, Sung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.209-213
    • /
    • 2016
  • The characteristics of fluidization in a centrifugal fluidized bed with a 184 mm inner diameter, 50 mm width of the gas distributor was observed by photographs and experimental works using Cu-ZSM-5 zeolite catalysts with a mean diameter of $26{\mu}m$ and $32{\mu}m$ as bed materials at a rotor at 400rpm and 600rpm. Under these experimental ranges, the experimental results clearly showed the effects of the number of rotation of the rotor on the behavior of bubbles in the centrifugal fluidized bed. As the number of rotations of the rotor increased, the gas velocity at which bubbles begin to be formed also increased but the diameter of the bubbles decreased. In addition, the size of the bubbles in the centrifugal fluidized bed were relatively smaller than those in the conventional bubbling fluidized bed.

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Yoon, Yong-Hee;Lee, Seung-Chul;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.81-85
    • /
    • 2007
  • A fluidized bed reactor is made with quartz. The size of FBR is 0.055 m I.D. and 1.0 m in height. The FBR was employed for the thermocatalytic decomposition of propane to produce hydrogen without $CO_{2}$. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. Carbon black DCC-N330 is used to decompose the propane gas. The propane decomposition reaction over carbon black catalyst in a fluidized bed reactor was carried out the temperature range of 600 ${\sim}$ 800 $^{\circ}C$, propane gas velocity of 1.0 ${\sim}$ 4.0$U_{mf}$($1U_{mf}$ = 0.61cm/s) and the catalyst loading of 100 ${\sim}$ 200g. Production of $H_{2}$ such as other reaction temperature, gas velocity, catalytic loading on the reaction rates was investigated. The carbon depositied on the catalyst surface was observed by FE-SEM. The particle size of the carbon black was observed by Particle size analyzer. Resulting production in the experiment was not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene.

  • PDF