• Title/Summary/Keyword: Gas Emission Facilities

Search Result 123, Processing Time 0.026 seconds

The Methods Calculating the Reduction Efficiency of Nitrogen Oxide for the Facilities Including the Low NOx Burners (저녹스 버너 설치 시설의 질소산화물 저감 효율 산정 방법)

  • Lee, Ki Yong;Talukder, Niladri
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.295-296
    • /
    • 2015
  • We presented the methods calculating the reduction efficiency of nitrogen oxide for the low $NO_x$ burner as the pollution prevention facilities. The standard $NO_x$ concentration was used on the emission factor of LNG, $3.7g/m^3$. The $NO_x$ reduction efficiency based on the $NO_x$ concentration was presented and the relationships between the $NO_x$ concentration and the emission factor or the specific heat emission factor were derived. These results could be accurately reflected on calculating the amount of the nitrogen oxide emissions. In addition, according to the arrangement of the low $NO_x$ burners the methods of applying their $NO_x$ reduction efficiency were proposed. The $NO_x$ reduction efficiency for the facilities consisting of the low $NO_x$ burners and the non-low $NO_x$ burners could be estimated with information about the reduction efficiency of each low $NO_x$ burners, the fuel consumption rate, and the heating value of fuel.

  • PDF

Effects of $CO_2$ addition to Oxygen-Enriched Combustion (산소부화연소에서 $CO_2$ 첨가에 대한 영향)

  • Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1389-1394
    • /
    • 2003
  • $CO_2$ is a well-known green house gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. But the adiabatic flame temperature is too high. So existing facilities must be changed, or the adiabatic flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were studied experimentally for the various oxygen-enriched mtios(OER) by addition of $CO_2$ under coustant $O_2$ flowrate. Results showed that the reaction zone was quenched, broadened, as addition of $CO_2$ was increased. Temperature has a large effect on the NOx emission. The emission of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0, but the composition of CO decreased by quenching effect at OER=50 and 100%.

  • PDF

The Characteristics of Mercury Emission from Municipal Solid Waste (MSW) Incinerator Stack (폐기물 소각시설 배가스에서의 수은 배출특성)

  • Lee Han-Kook
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.378-387
    • /
    • 2004
  • This study was carried to investigate the emission characteristics of mercury from domestic and industrial MSW (municipal solid waste) incinerator stacks. The mercury concentration levels of flue gas from 32 MSW incinerators stacks selected were above the criteria level ($5{\mu}g/S\;m^3$). MSWI facilities exceeding the criteria levels in Korea are due to the poor units comparison of combustion chamber(CC)-cyclone(CY)-stack. So, the mercury from MSW incinerators stack were suspected to contaminate the natural system unless the MSW incinerators were properly controlled. Mean-while, the relationship between mercury concentration and temperature of flue gas in MSW incinerator stacks were examined at two temperature ranges (Group A : $29.85{\sim}327.63^{\circ}C$, Group B : $446.9{\sim}848.15^{\circ}C$). The mercury concentration in flue gas with high temperature range was higher than that of flue gas with low temperature rage. This mean that the temperature of flue gas plays an important role in mercury control in MSW incinerator. The emission characteristics oi mercury was also evaluated by using the correlation matrix between the mercury and NOx, $PM_{10}$, moisture (MO.) at both low temperature and high temperature flue gas ranges. The mercury concentration was mainly affected by NOx, $PM_{10}$. moisture (MO.) at low temperature range, while the mercury concentration at high temperature flue gas was mainly affected by NOx, moisture (MO.). From these results, it was suggested that the temperature of cooling system and the air pollution control device should be properly regulated in order to control mercury of flue gas in MSWI incinerator.

Emission Character of PCDDs/PCDFs and Precusors in the Flue Gas of the MWSI(I) (도시쓰레기 소각로 배출가스 중 다이옥신류 및 전구물질의 배출특성(I))

  • Shin, S.K.;Chung, Y.H.;Kim, S.C.;Jang, S.K.;Lee, J.I.;Lee, W.S.;Lee, J.B.;Lee, D.H.
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 1999
  • Two of municipal waste incinerators were selected as surveying facilities to research on the emission of dioxin and precusors. The sampling of flue gas and analysis was performed in the selected facilities. From the result, the emission patterns of dioxin and precusors, their relatership were examined. The toxic equivalency quantity(TEQ) of dioxin concentration was evaluated in two municipal waste incinerators. The 76.24% and 60.84% of total dioxin concentration in A and B incinerator were made up of the penta-, hexa- and hepta-chlorinated dibenzo-p-dioxin, respectively. Therefore, to reduce the dioxins in flue gas have to control the formation of furans. The chlorobenzenes and chlorophenols were analyzed in two incinerators. The 1,2,4,5-tetrachlorobenzene, penta-, and hexachlorobenzene are discharged and 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol and pentachlorophenol are discharged mainly in A and B municipal waste incinerators.

  • PDF

The Characteristics of NOx Emission for Premixed Combustion and Flame Rapid Cooling of MFB (메탈파이버 버너의 예혼합 연소 및 화염급냉에 따른 NOx 배출 특성)

  • Kim, Hyouck-Ju;Park, Byung-Sik;Kim, Jong-Jin;Jeong, Hae-Seung
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.172-179
    • /
    • 2001
  • Experimental studies have been carried out to find out the characteristics of the heat transfer, combustion emission and noise in the boilers without any extra firing zone for complete combustion of fuel. For the experiments a burner of premixed type and some heat exchangers were designed and manufactured. Also test facilities including a data acquisition system and various measuring devices were set up in order to measure automatically the various temperatures and flow rates of water and combustion gas. Various experiments were performed to find out the heat transfer characteristics as well as combustion emission and noise. In general, the burner which has uniform holes in the burner nozzle plate generates big combustion noise . whistling. The noise reduction method is discussed in this study. Many experimental data such as noise level, the amount of pollutant emission and heat transfer rate for different combination of heat exchangers are given as comparison bases for numerical studies.

  • PDF

A Study on the Safety Distance of the Fuelling Facilities by the Radiation Heat in the Fire at the Gas Station (주유소 내 부대시설 화재발생시 복사열에 따른 주유설비 안전거리에 관한 연구)

  • Kim, Kisung;Lee, Sangwon;Song, Dongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.7-13
    • /
    • 2021
  • Various research has been done on fires and explosions at gas stations at home and abroad. However, only studies of off-site damage in the event of fire at the gas station were conducted, and research on fire at the auxiliary facilities in the gas station was insufficient. The gas station is a place where anyone can easily access dangerous goods. As the risk of fire increases due to the recent increase of auxiliary facilities such as convenience stores and car repair shops in gas stations, it is important to detect the effects of fire on the main oil refinery in case of fire and to verify the validity of existing regulations. In this thesis, we conducted a study to find out the effect of radiation heat on the separation between fixed and fixed oil reactors in the event of fire at an auxiliary facility. Simulation was modelled using FDS 5.5.3 Version, and the size of the fire source was configured with 13 fire assessment devices and the heat emission rate per unit area was entered. Simulation shows that the separation distance of 2 m does not secure the safety of the gas pump in the event of fire at the auxiliary facilities, and radiation heat does not damage at the separation distance of at least 4 m. Accordingly, facilities that can block radiant heat in the event of fire at auxiliary facilities, and measures to limit the use of auxiliary facilities or to re-impose the separation between buildings and fixtures will be needed.

Estimation of Emission and Development of Emission Factor on Greenhouse Gas (CO2) of the Combustion Facilities (연소시설의 온실가스(CO2) 배출량 산정 및 배출계수개발)

  • Kim, Hong-Rok;Jin, Byong-Bok;Yoon, Wan-Woo;Kwon, Young-Sung;Lee, Min-Young;Yoon, Young-Bong;Shin, Won-Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.4
    • /
    • pp.277-283
    • /
    • 2007
  • Since the Kyoto Protocol became into effect, Korea has been expected to be part of the Annex I countries performing the duty of GHG reduction in the phase of post-Kyoto. Therefore, it is necessary to develop emission factors appropriate to Korean circumstances. In order to develop emission factors this study utilized the CleanSYS, which is the real-time monitoring system for industrial smoke stacks to calculate the emission rate of $CO_2$ continuously. In this study, the main focus was on the power generation plants emitting the largest amount of $CO_2$ among the sectors of fossil fuel combustion. Also, an examination on the comparison of $CO_2$ emission was made among 3 generation plants using the different types of fuels such as bituminous coal and LNG; one for coal and others for LNG. The $CO_2$ concentration of the coal fired plant showed Ave. 13.85 %(10,384 ton/day). The LNG fired plants showed 3.16 %(1,031 ton/day) and 3.19 %(1,209 ton/day), respectably. Consequently, by calculating the emission factors using the above results, it was found that the bituminous coal fired power plant had the $CO_2$ emission factor average of 88,726 kg/TJ, and the LNG fired power plants had the $CO_2$ average emission factors of 56,971 kg/TJ and 55,012 kg/TJ respectably which were similar to the IPCC emission factor.

Establishment of Korea Gas Safety Standards for Hydrogen Appliance Inspection in Accordance with Hydrogen Law (수소법에 따른 수소용품 검사시행에 대비한 기술기준 제정)

  • Jung, Jae-Hwan;Kim, Wan-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.80-84
    • /
    • 2021
  • As the Hydrogen law was enacted, 4 types of hydrogen appliances were designated as inspection products. The types of hydrogen appliances are water electrolysis equipment, hydrogen extraction equipment, stationary fuel cells, and mobile fuel cells. The establishment fo safety standards for hydrogen appliance inspection defines risk factors for each hydrogen appliance and stipulates safety standards to prevent risk factors. The main safety standards for each hydrogen appliance are hydrogen quality and safety control for water electrolysis, toxic substances emission prevention and carbon monoxide emission prevention for hydrogen extraction facilities, vibration safety for mobile fuel cells.

A Study on the Safety Improvement of Carbon Black Manufacturing Process (카본블랙 제조공정의 안전성 향상에 관한 연구)

  • Joo, Jong-Yul;Jeong Phil-Hoon;Sung-Eun, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.153-161
    • /
    • 2023
  • Carbon black is a material in the form of fine black powder obtained by incomplete combustion or pyrolysis of hydrocarbons, and is composed of 90-99% carbon, and the rest is composed of hydrogen and oxygen. In the event of an emergency during the manufacture of carbon black, the generated tail gas should be safely discharged through an emergency line to prevent fire, explosion, and environmental pollution accidents caused by the tail gas. If the pressure continues to rise, the pressure control valve shall operate and the rupture plate shall be ruptured sequentially and the tail gas shall be discharged to the vent stack through the emergency line. As an emergency emission system, even if some untreated substances in the tail gas are released into the atmosphere, they are lighter than air, so it is safe to discharge them to a safe place through the Vent Stack. If the gas pressure is rising or worse, it is discharged from the Vent Stackine, and discharging fuel.