• 제목/요약/키워드: Gas Cooling

검색결과 1,092건 처리시간 0.031초

전기 자동차용 폴리올 에스테르계 냉동기유의 R-1234yf 냉매와의 적합성 연구 (Study on Chemical Stabilities with R-1234yf Refrigerant of Polyol Ester Refrigerant Oil for Electric Vehicles)

  • 홍지수;정근우;김남균;신지훈;김영운;이은호;고봉성;황승용
    • Tribology and Lubricants
    • /
    • 제36권3호
    • /
    • pp.139-146
    • /
    • 2020
  • Global warming has led to an increase in demand of eco-friendly vehicles, such as electric cars, for reducing greenhouse gas emissions, and especially, regulating carbon dioxide generation. In addition, electric vehicles are equipped with an electric drive-type hermetic scroll compressor and a refrigerant, which exhibit current and future trends of using environmentally friendly refrigerants, including R-1234yf. In this study, polyol ester-based refrigeration oils are prepared via condensation esterification of polyol and fatty acids. The oils can be combined with R-1234yf refrigerant for applications in air conditioning and cooling systems of electric vehicles. The structure of synthetic polyol esters is confirmed via 1H-NMR and FT-IR spectrum analysis, and the composition of the polyol ester is analyzed via gas chromatogram analysis. Furthermore, kinematic viscosity, viscosity index, total acid value, pour point, and color are analyzed as fundamental physical properties of the synthetic polyol esters. The compatibility and chemical stability of the synthetic polyol ester combined with the R-1234yf refrigerant are obtained via high temperature and high pressure oil-resistant refrigerant tests. The changes in the oil color and catalyst activity are observed before and after the experiment to determine whether it is suitable as a refrigerator oil.

석유화학공정에서 재정적 위험도에 의한 위험기반검사의 적용 (Application of Risk-Based Inspection with Financial Risk for a Petrochemical Process)

  • 김태옥;이중희;최성규;이헌창;조지훈
    • 한국가스학회지
    • /
    • 제13권4호
    • /
    • pp.53-60
    • /
    • 2009
  • 냉각수, 수증기 등과 같은 유틸리티를 사용하는 설비에서는 장치손상지역에 의한 사고 피해크기(COF)가 0의 값을 나타내고, 이로 인해 위험도가 0으로 나타난다. 따라서 본 연구에서는 위험기반검사(RBI)에서 장치손상지역에 의한 COF로부터 위험도를 산출하는 방법을 개선하여 재정적 손실에 의한 COF로부터 위험도를 산출하는 RBI 절차를 개발하였다. 그리고 장치손상지역과 재정적 손실에 의한 위험도로부터 검사주기를 동시에 산정하는 RBI 프로그램(KS-RBI Ver 3.1)을 개발하여 석유화학공정에 적용하였다. 그 결과, 재정적 손실에 의한 COF로부터 산출한 위험도는 장치손상지역에 의한 COF로부터 산출한 위험도 결과와 거의 유사하였다. 그러나 유틸리티를 사용하거나 고가의 설비에서는 장치손상지역에 의한 경우보다 재정적 손실에 의한 COF로부터 설비의 위험도를 보다 정확하게 산출할 수 있었다.

  • PDF

25BAR급 바이오가스 고압 압축공급시스템 상세설계 (Detailed Design for 25bar-class Biogas Compression Supplying System)

  • 허광범;박정극;윤은영;이정빈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.173.1-173.1
    • /
    • 2011
  • The high fuel flexibility of gas turbine power system has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and sewage waste water as a fuel for gas turbines has increased. We investigated the performance of high pressure biogas compression system and operating conditions for supplying biogas. The total flow per minute of biogas from food waste water digestion tank is $54Nm^3$. The main type of biogas compression system is the reciprocating system and screw type system. The target of biogas mechanical data is the as belows; inlet pressure 0.045bar, supplying biogas temperature is $30{\sim}60^{\circ}C$, and final pressure is above the 25 bar. Also, inlet conditions of biogas consist of CH4 48.5%~83%, $H_2S$ Max. 500ppm, $NH_3$ Max. 1,500ppm and Siloxane 2.7~4.6ppm. The boosting Blower system raises a pressure from 0.045bar to 1bar before main compressor. The main system lay out of reciprocating consisits of compressor driver, filter, cooling system, blowdown vessel, control system and ESD(Emergency Shut Down) system. And an enclosure package needs to be installed for reducing noise up to 75dB. The system driver is the electronic motor of explosion proof type. Forthe compressor system reliable operation, the cleaning system something like particulate filter needs to be set up in the inlet of compressor and Coalescing Filter in the outlet of compressor. Particulate Filter has to be removed above $10{\mu}m$ size of the particles in biogas. The coalescing filter(Micofine Borosilicate Glass Fibers Filter treated phenol acid) also removes moisture and oil of above $0.3{\mu}m$ to be involved in high pressure biogas up to 90%~98%.

  • PDF

의약품 원료 DIET 합성 중 H2O2를 이용한 붕소제거 반응공정에서의 폭주반응 위험성 평가 (Hazard Evaluation of Runaway Reaction in Deboronation Process Using H2O2 in DIET Synthesis of Pharmaceutical Raw Material)

  • 김원성;이근원
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.49-54
    • /
    • 2018
  • 원료의약품 제조회사에서는 화학반응에 의해 제품이 생산되기 때문에 화학반응 전 단계인 원료 분말을 투입하는 과정에서 화재 폭발사고가 자주 발생하고 있다. 이에 대한 실질적인 화학반응 단계에서 사고원인 분석을 통한 안전대책 연구는 많지 않다. 본 연구에서는 화학반응 단계에서의 위험성을 알아보고자 붕소제거 반응공정에서 발열에 대한 실험을 진행했다. 연구대상 반응공정은 실제 원료의약품 공장에서 합성하고 있는 제품을 대상으로 반응열량계를 이용하여 열적 거동을 조사하였다. 실제 제조현장의 반응공정에서 냉각실패 등의 이유로 발열할 수 있는 합성반응의 최대온도와 기술적 근거에 의한 최대온도를 비교해서 위험도를 예측하였다. 이러한 결과를 가지고 실제 제조현장에 적용하여 발열에 따른 폭주반응 위험성을 제어하는 안전대책을 제시하였다.

Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal)

  • 조욱제;윤태진;곽승윤;이재형;강정윤
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.

링 블로우를 이용한 펄스형 $CO_2$ 레이저 시스템의 효율 향상과 동작 특성에 관한 연구 (A Study on Efficiency Improvement and Optimization of Operating Characteristics of Pulsed $CO_2$ Laser System using Ring Blower)

  • 김도완;정현주;박성준;정종한;이동훈;김희제;조정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2000
  • In this paper, it is purpose to develop a pulsed $CO_2$ laser with stable output at pulse repetition rate range of 2 KHz. We used a IGBT as a switching device. The laser cavity was fabricated as an axial and water cooled type. It was used a ring blower to increase a cooling effect The laser performance characteristics as parameters, such as pulse repetition rate, gas pressure have been investigated. The experiment was done under 3 electrode-type instead of 2 electrode-type. To achieve 3 electrode-type, we used two pulse-transformers which is operated parallel. As a result, the maximum output was about 28 W at the total pressure of 20 Torr, the gas mixture $Co_2$:$N_2$:He=1:9:15 and the pulse repetition rate of 1300 Hz.

  • PDF

청주시 용도지역별 가로수의 생리.생태학적 특성에 관한 연구 -Ginkgo biloba와 Platanus orientalis를 중심으로- (Physio-Ecological Characteristics of Roadside Tree by Difference under Zoning of Urban Districts in Cheong-ju City -Focused on the Ginkgo biloba and Platanus orientalis-)

  • 인형민;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제19권2호
    • /
    • pp.229-236
    • /
    • 2010
  • As air pollution has emerged as one of the most pressing urban environmental concerns, many studies have investigated the influence of air pollutants(ex: $O^3$, $NO^2$, $SO^2$, Acid rain, etc.) on roadside trees and urban grove. In Korea, population density started to increase since the industrialization. Since dense population aggravates our living conditions, it's very important for us to preserve and keep a lively and refreshing nature in order to live with green nature in harmony under the current artificial environment-dominating world. In metropolitan cities, the production of pollutants increases in proportion to population growth. The vehicle exhaust gas and air pollutants from cooling and heating systems have been the major causes of acid rain. Furthermore, tire particles which are naturally produced by tire wearing on roads and other toxic substances in exhaust gas have caused a problem in human health directly and indirectly. In fact, a lot of studies have analyzed air pollution, roadside trees and plants in Korea. However, they are mostly limited to covering the influence of air pollution on the growth of plants. No paper has clearly explained why air pollution-resistant or-vulnerable species has shown different reactions yet. Even though a lot of urban roadside trees have died or stopped to grow from time to time, this kind of problem has not been properly examined. This paper is aimed to comparatively analyze physio-ecological characteristic such as photosynthesis, chlorophyll contents, soil volume water figure out their relationship with environmental factors against the expanding roadside trees in Cheong-ju, and provide basic data for management of roadside trees and elaboration of urban environment preservation policies.

GDI 엔진의 냉각수온에 따른 연소성능 및 입자상 물질 배출 특성 (Dependence of Nanoparticle and Combustion Characteristics of Gasoline Direct Injection Engines on Coolant Temperature)

  • 이효근;최관희;명차리;박심수;박종일;한승국
    • 대한기계학회논문집B
    • /
    • 제36권2호
    • /
    • pp.131-136
    • /
    • 2012
  • 본 논문에서는 GDI 엔진의 냉각수 온도에 따른 연소 및 배출가스 특성을 연구하였다. 엔진에서 나오는 입자상 물질의 수와 크기 분포는 DMS-500 장비로 측정하였다. 배기포트 에 장착된 CLD-400 과 HFR-400 을 통해 NOx 및 THC 의 배출 특성을 연소주기 별로 측정하였다. 결과적으로 낮은 냉각수온에서 5~10 nm 의 입자상 물질이 크게 증가하는 특성을 보였다. THC 또한 낮은 냉각수온에서 증가하는 특성을 보였는데 이는 연소실 내 연료의 액막현상 때문이다. 그리고 NOx 는 높은 냉각수온에서 감소하는 특성을 보였는데 이는 내부 EGR 이 증가하기 때문이다. 결론적으로 THC 와 NOx 그리고 입자상 물질의 배출을 줄이기 위해서는 냉각수온을 빠르게 올리는 EMS 변수 설정 필요하다.

Controlled Growth of Large-area Mono-, Bi-, and Few-layer Graphene by Chemical Vapor Deposition on Copper Substrate

  • Kim, Yooseok;Lee, Su-il;Jung, Dae Sung;Cha, Myoung-Jun;Kim, Ji Sun;Park, Seung-Ho;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.380.2-380.2
    • /
    • 2014
  • Direct synthesis of graphene using a chemical vapor deposition (CVD) has been considered a facile way to produce large-area and uniform graphene film, which is an accessible method from an application standpoint. Hence, their fundamental understanding is highly required. Unfortunately, the CVD growth mechanism of graphene on Cu remains elusive and controversial. Here, we present the effect of graphene growth parameters on the number of graphene layers were systematically studied and growth mechanism on copper substrate was proposed. Parameters that could affect the thickness of graphene growth include the pressure in the system, gas flow rate, growth pressure, growth temperature, and cooling rate. We hypothesis that the partial pressure of both the carbon sources and hydrogen gas in the growth process, which is set by the total pressure and the mole fraction of the feedstock, could be the factor that controls the thickness of the graphene. The graphene on Cu was grown by the diffusion and precipitation mode not by the surface adsorption mode, because similar results were observed in graphene/Ni system. The carbon-diffused Cu layer was also observed after graphene growth under high CH4 pressure. Our findings may facilitate both the large-area synthesis of well-controlled graphene features and wide range of applications of graphene.

  • PDF

적외선 열화상 카메라를 이용한 탄소강관 용접부 결함검출 (Defect Detection of Carbon Steel Pipe Weld Area using Infrared Thermography Camera)

  • 권대주;정나라;김재열
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.124-129
    • /
    • 2014
  • The piping system accounts for a large portion of the machinery structure of a plant, and is considered as a very important mechanical structure for plant safety. Accordingly, it is used in most energy plants in the nuclear, gas, and heavy chemical industries. In particular, the piping system for a nuclear plant is generally complicated and uses the reactor and its cooling system. The piping equipment is exposed to diverse loads such as weight, temperature, pressure, and seismic load from pipes and fluids, and is used to transfer steam, oil, and gas. In ultrasound infrared thermography, which is an active thermography technology, a 15-100 kHz ultrasound wave is applied to the subject, and the resulting heat from the defective parts is measured using a thermography camera. Because this technique can inspect a large area simultaneously and detect defects such as cracks and delamination in real time, it is used to detect defects in the new and renewable energy, car, and aerospace industries, and recently, in piping defect detection. In this study, ultrasound infrared thermography is used to detect information for the diagnosis of nuclear equipment and structures. Test specimens are prepared with piping materials for nuclear plants, and the optimally designed ultrasound horn and ultrasound vibration system is used to determine damages on nuclear plant piping and detect defects. Additionally, the detected images are used to improve the reliability of the surface and internal defect detection for nuclear piping materials, and their field applicability and reliability is verified.