• 제목/요약/키워드: Gas Composition

검색결과 1,750건 처리시간 0.032초

배기가스의 온도 및 HC와 $O_2$의 조성 변화에 따른 DOC-CDPF의 재생 특성에 관한 실험적 연구 (An Experimental Study on Regeneration Characteristics by Variation of Exhaust Gas Temperature, HC and $O_2$ Concentrations on DOC-CDPF System)

  • 조용석;이성욱;이정섭;윤여빈;박영준
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.43-49
    • /
    • 2009
  • A catalyzed diesel particulate filter (CDPF) causes the progressive increase in back pressure of an exhaust system due to the loading of soot particles. To minimize pressure drop which is generated by CDPF, the filter should be regenerated when it collects a certain quantity of soot. It is important to know characteristics of regeneration of CDPF with various of exhaust gas temperatures and compositions. The oxidation of HC in DOC leads to increase gas temperature of DOC downstream. The increased gas temperature by DOC has an positive effect on CDPF regeneration. This study presents characteristics of regeneration of CDPF with DOC according to various gas composition, such as HC and $O_2$ concentration. The test-rig is used to control each gas composition and temperature during regeneration of CDPF. Experimental results indicate that the increased concentration of $O_2$ regenerates DPF more actively. With increasing HC concentration, the gas temperature of CDPF upstream increased due to more oxidation of HC. But excessive supply of HC leads to decrease of $O_2$ concentration in the CDPF, which makes it hard to regenerate CDPF.

흡기 조성 변화가 디젤기관의 성능에 미치는 영향 (Effects of Intake Gas Compositions on the Performance of Diesel Engine)

  • 김세원;이재규
    • 한국자동차공학회논문집
    • /
    • 제2권2호
    • /
    • pp.49-58
    • /
    • 1994
  • A study on the performance of a Diesel engine with various intake gas compositions other than that of air are performed experimentally. In this study, the concentrations of each of oxygen, nitorgen, carbon dioxide, and argon are changed and their effects on the performance of the engine are investigated parametrically. The experiments are performed at constant engine speed condition, and main measured parameters are cylinder pressure, intake gas compositions, fuel consumption rate. Increase of oxygen concentration up to 24% improved the performance of the engine generally. The adverse effect was observed when the oxygen concentration was increased over 24%. Increase of carbon dioxide concentration degraded the performance of the engine, mainly due to the lower specific heat ratio of carbon dioxide. Adding argon gas to the intake gas improved the overall performance. Finally, it is found that two most influencing factors affecting the performance of the Diesel engine in this study of intake gas composition variation are ignition delay and specific heat ratio of the intake gas.

  • PDF

단기통 4사이클 스파아크 점화기관 흡.배기 과정의 시뮬레이션 (Simulation of the gas exchange process for single-cylinder 4-stroke cycle spark ignition engine)

  • 윤건식;유병철
    • 오토저널
    • /
    • 제7권1호
    • /
    • pp.24-34
    • /
    • 1985
  • The study of unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 4-stroke cycle spark ignition engine is presented in this paper. The generalized method of characteristics including friction, heat transfer, change of flow area and entropy gradients was used for solving the equations defining the gas exchange process. The path line calculation was also conducted to allow for calculation of the gas composition and entropy change along the path lines, and of the variable specific heat due to the change of temperature and composition. As the result of the simulation, the properties at each point in the inlet and exhaust pipe, pressure and temperature in the cylinder, and charging efficiency were obtained. Pumping loss and residual gas fraction were also computed. The effect of engine speed, exhaust and inlet pipe length on the pumping loss and charging efficiency were studied showing that the results were in agreement with what has been known from experiments.

  • PDF

바이오가스를 이용한 가스화기 운전 방안 (The Gasifier Operation Method using Bio Gas)

  • 이중원;주용진;정재화;박세익;김의식
    • 한국수소및신에너지학회논문집
    • /
    • 제24권3호
    • /
    • pp.249-254
    • /
    • 2013
  • The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with other coal fueled power generation system. The aim of this study is to confirm the feasibility of using bio gas in coal feeding system and syngas recirculation system. The effects of using bio gas in the gasifier on the syngas composition were investigated through simulations using the Aspen Plus process simulator. It was found that these changes had an influence on the syngas composition of the final stream and bio gas can be used in a gasifier system.

발전용 가스터빈 연소기의 천연가스 연소유동 해석 (Natural Gas Combustion Analysis in Power Generation Gas Turbine)

  • 김태호;최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.156-161
    • /
    • 2005
  • Two and Three dimensional numerical simulations have been carried out to understand the combustion characteristics of LNG-fueled gas turbine combustor for power generation. Focus of the study was given to the influences of different fuel composition of imported and domestic natural gases with the flow conditions selected from the gas turbine operation data. Reacting flow characteristics of the swirl stabilized natural gas combustor were understood from the comparison of the two-dimensional and three-dimensional results. The thermal influences of different natural gases were very small and the fuel composition and flow rate were considered to be tuned well.

  • PDF

아황산가스가 건조 과정중 잎담배 내용성분에 미치는 영향 (The Effect of $SO_2$ Gas on Chemical Composition of Tobacco Leaves During Flue-curing)

  • 황건중;석영선
    • 한국환경보건학회지
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 1985
  • This experiment was carried out to study on the effect of SO$_2$ gas to chemical composition of tobacco leaves during flue-curing. The results were as follows: SO$_2$ gas in briquet was the major factor to damage with tobacco leaves. The damage only occured in a presence of moisture in tobacco leaves, it did not occured after color fix'lng stage which is a little leaf moisture. The danger of damage to tobacco leaves lies in 10ppm of SO$_2$ gas concentration. Follow with the SO$_2$ gas concentration increased, sugar and nitrogen contents became higher, polyphenol contents were loss, and the quality of tobacco leaves declined.

  • PDF

전기 화학 반응을 포함한 3차원 열유동 해석을 이용한 용융탄산염 연료전지의 성능예측 (Prediction of MCFC Performance Using Three Dimensional Heat and fluid Flow Analysis with Electrochemical Reaction)

  • 조황묵;이경원;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.219-224
    • /
    • 2003
  • An analysis procedure for the MCFC channel flow has been developed to predict the fuel cell performance. As for the electrochemical reaction, among several chemical reaction models, one that fits the data best is adopted after a comprehensive comparative study. The Wavier-Stokes, energy, and species equations are solved to obtain the velocity, temperature and concentration fields for a specified average current density. The procedure is iterative as the local current density, or the reaction rate, is allowed to vary with the gas composition. A series of calculations are then carried out to examine the effects of gas flow rate, gas composition, gas usage rate, inlet gas temperature, and average current density on the fuel cell performance. The fuel cell characteristics, such as the temperature, current density distributions, and the concentration fields, for various operating conditions are presented and discussed.

  • PDF

라만분석기를 이용한 LNG 품질 분석 실증 연구 (A Study on LNG Quality Analysis using a Raman Analyzer)

  • 이강진;주우성;고유진;모용기;이승호;김용철
    • Korean Chemical Engineering Research
    • /
    • 제62권1호
    • /
    • pp.70-79
    • /
    • 2024
  • 라만분석기는 분자가 가지는 고유 진동에 빛을 조사하여 발생하는 빛의 산란이 생기는 "라만효과"를 이용하여 분자 구분과 성분 분석을 할 수 있는 분석기로, 천연가스 산업에서도 LNG(액화천연가스) 수출 및 수입 기지 외에 벙커링 및 탱크로리 분야에서도 폭 넓게 사용 중이다. 본 연구에서는 실제 현장 조건하에서, LNG 성분 분석 및 주요 물성(발열량, 기준밀도 등)을 산출하기 위해 LNG 수입기지에 라만분석기를 설치, 운영하였으며, 측정된 LNG 성분 및 발열량을 기존 검증되어 운영 중인 가스분석기에 의해 분석된 성분 및 발열량과 비교하였다. 시험 결과 라만분석기는 매우 빠르고 안정되게 LNG 성분 및 발열량을 측정하였으며, LNG 거래의 기준이 되는 발열량을 기존 가스분석기 결과값과 비교시에도 적정 오차 기준 내에 있는 것을 확인하였다. 추가적으로 본 연구를 통해 얻은 측정 결과는 관련 표준(ASTM D7940-14)의 정확도 기준을 만족하였고, 국외 대규모 실증 사례와의 비교 시에도 유사한 결과를 산출하였다.

농도실측 및 연료 성분조성에 의한 중소형 RPF 소각시설의 온실가스 배출계수 개발 (The Development of Emission Factors of Greenhouse Gas from Middle and Small-Scaled RPF Incineration Facility by Concentration Measurement and Fuel Composition)

  • 나경호;송일석;최시림;유재인;박익범;김진길
    • 한국대기환경학회지
    • /
    • 제28권4호
    • /
    • pp.423-434
    • /
    • 2012
  • This study was carried out to develop for the emission factor of greenhouse gas (GHG) from medium and smallscaled incineration facility using RPF which is considering as a part of renewable energy in UNFCC. The actual concentration of the exhaust gas and the fuel composition of RPF were measured for the calculation of GHG emission factor in RPF incinerators, and were compared with the IPCC guideline. The $CO_2$ and $N_2O$ emission factors by the actual concentration of exhaust gas were $2.3575{\pm}1.0070tCO_2/tRPF$ and $0.0014{\pm}0.0014tN_2O/tRPF$ respectively. Also, $CO_2$ emission factor by the RPF composition was $2.7057{\pm}0.0540tCO_2/tRPF$. The GHG emission factor per energy by the actual concentration was $83.0867{\pm}26.0346tCO_2e/TJ$ which showed higher consistency with the GHG emission factor ($80.3967tCO_2e/TJ$) of waste plastic in the IPCC guideline (2006b). The $CO_2$ and $N_2O$ emission factor calculated in this study is considered as a meaningful data for GHG emission factor of RPF incineration facility because of not being developed in ROK.