• Title/Summary/Keyword: Gas Combustion

Search Result 3,048, Processing Time 0.033 seconds

Study on the Thermodynamic Properties and Combustion Information of Natural Gases from Various Producing Districts (산지별 천연가스들의 열 물성치 및 연소 정보 검토)

  • Lee, Chang-Eon;Hyun, Seung-Ho;Hwang, Cheol-Hong;Lee, Sung-Min;Ha, Young-Cheol;Lee, Kang-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.38-47
    • /
    • 2007
  • The diversification of import districts of natural gas is trying to prepare an increase in the demand and price. The interchangeability of natural gases should be examined prior to supply to gas appliances, although compositional differences among natural gases are not large. The object of this study is to investigate numerically the thermodynamic and transport properties as well as information on combustion of 6 natural gases. Comparing the properties of BOG1 with those of standard gas, the maximum differences of heating value, Wobbe index, air-fuel ratio, and specific heat are 10%, 4%, 10% and 5.54%, respectively. That is, the BOG1 is required careful application. However, all gases except for BOG1 show the similar properties with standard gas. Finally, the combustion information such as flame temperature and burning velocity are examined. These results will provide the useful information related to the interchangeability of various natural gases in practical combustion appliances.

  • PDF

Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber (석탄가스화 연료의 정적 예혼합 연소특성)

  • Kim Tae-Kwon;Jang Jun-Young
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

Code Development for Online Assessment of Combustion Stability Margin by Utilizing Damping Ratios of Dynamic Pressure Data (동압 데이터의 감쇠계수를 활용한 연소 안정마진 실시간 평가 코드 개발)

  • Song, Won Joon;Ahn, Kwangho;Park, Seik;Kim, Sungchul;Cha, Dong Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.117-119
    • /
    • 2013
  • Combustion stability margin of a model gas turbine has been assessed by utilizing damping ratios of measured dynamic pressure data. It is known that acoustic oscillations in combustion chambers can be described as a superposition of nonlinearly interacting oscillators. Based on this theoretical background, CSMA (Combustion Stability Margin Assessment) code has been developed. The code has been employed into a model gas turbine combustion experiment, focused on the combustion instability, to show its capability to determine the damping ratio of measured dynamic pressure and further to assess combustion stability margin of the experiment, and turned out that the code works well.

  • PDF

A Study on Combustion and Characteristics of Exhaust Gas Properties for Combustion Chamber (연소실 형상에 따른 연소 및 배기가스 배출물 특성에 관한 연구)

  • 김대열;한영출;주신혁;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents characteristics of combustion and exhaust gas properties according to variation of the combustion chamber for economy and emissions standards. In order to use combustion and exhaust gas properties data, it is necessary to build some data base, which use cylinder pressure sensor and emission tester. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the coefficient of variation(COV) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable combustion chamber can be improved combustion stability and be reduced exhaust emission.

Effects of Hydrogen in SNG on Gas Turbine Combustion Characteristics (합성천연가스의 수소함량 변화에 따른 가스터빈 연소특성 평가)

  • Park, Se-Ik;Kim, Ui-Sik;Chung, Jae-Hwa;Hong, Jin-Pyo;Kim, Sung-Chul;Cha, Dong-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.412-419
    • /
    • 2012
  • Increasing demand for natural gas and higher natural gas prices in the recent decades have led many people to pursue unconventional methods of natural gas production. POSCO-Gwangyang synthetic natural gas (SNG) project was launched in 2010. As the market price of natural gas goes up, the increase of its price gets more sensitive due to the high cost of transportation and liquefaction. This project can make the SNG economically viable. In parallel with this project, KEPCO (Korea Electric Power Corporation) joined in launching the SNG Quality Standard Bureau along with KOGAS (Korea Gas Corporation), POSCO and so on. KEPCO Research Institute is in charge of SNG fueled gas turbine combustion test. In this research, several combustion tests were conducted to find out the effect of hydrogen contents in SNG on gas turbine combustion. The hydrogen in synthetic natural gas did not affect on gas turbine combustion characteristics which are turbine inlet temperature including pattern factor and emission performance. However, flame stable region in ${\Phi}$-Air flow rate map was shifted to the lean condition due to autocatalytic effect of hydrogen.

A Study on the Calculation Formulae of Required Air and Burning Gas Amount of Heavy Fuel Oil (중유의 연소에 필요한 소요공기량과 발생가스량의 산식에 관한 연구)

  • 이우환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 1982
  • The characteristics of typical 17 kinds of fuel oils are studied to fine the calculation formulae for the required amount of air and the combustion gas amount. 1) The author's calculation formulae are as follows; (1) Theoretically required amount of air (2) Theoretical amount of combustion gas 2) Theoretical amount of the required air in combustion and combustion gas of fuel oils are always estimated less with Rosin's formula than with author's one. 3) Theoretical amount of the required air and the amount of combustion gas of fuel oils are more reasonable with author's formula than Rosin's one in comparison with results of actual analysis.

  • PDF

Tuning Test of a Double-Swirl Gas Turbine Combustor using Six Sigma Tools (Six Sigma 기법을 이용한 이중 스월 가스터빈 연소기의 튜닝시험)

  • Lee, Min Chul;Ahn, Kwang Ick;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.195-196
    • /
    • 2012
  • This paper describes combustion tuning methodology of double-swirl gas turbine combustor using six sigma tools. This methodology is consist of five steps-Define, Identify, Design, Optimize and Verify (DIDOV). First, the NOx reduction target was defined in the step design; second, the current status of the plant was diagnosed in the step of identify; third, the vital few control parameters to achieve the defined target were determined by analyzing the correlation between the control parameters and NOx emissions in the step of design; fourth, the optimum condition was derived from one of the six sigma tools in the step of optimize; finally, the optimum condition was verified by applying the condition to the gas turbine combustor in the step of verify. As a result of the suggested method, averaged NOx emissions were reduced by more than 70% and the standard deviation was improved by more than 60%. Thus, this methodology can be attributed to the efficient reduction of NOx emission with saving combustion tuning time.

  • PDF

Thermal Characteristics in a Gas Turbine Combustion Liner with Firing Temperature of 1600K (1600K급 가스터빈 연소실에서의 열특성 해석)

  • Yun, Nam-Geon;Kim, Kyung-Min;Jeon, Yun-Heung;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Moon-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2984-2988
    • /
    • 2008
  • Numerical analyses are carried out in order to understand complex thermal characteristics of a gas turbine combustor liner such as combustion gas temperatures, wall temperatures and heat transfer distributions. As results, The maximum internal and external heat transfer is $2218W/m^2K$ and $2358W/m^2K$, respectively. The combustion gas temperatures range is 673K to 1760K. A range of temperature on TBC is 676K to 1382K. Lastly, temperature range on outer surface of combustion liner cooled by compressed air is 676K to 1188K.

  • PDF

A Case Study on The Reduction and Examination for Noise and Vibration of Backpass Heat Surface in the Power Plant Boiler (발전용 보일러의 후부 전열면 소음진동 저감에 관한 사례 연구)

  • Lee, Gyoung-Soon;Lee, Tae-Hoon;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.642-647
    • /
    • 2008
  • The boiler structure is determined by combustion characteristics and construction costs in the combustion chamber of a large commercial boiler. The heat transfer in boiler is composed of the radiation and the convection. The convective heat transfer has happened to back-pass heating surface. The combustion gas sequentially passes through the reheater tube, 1st economizer tube, and 2nd economizer tube. In case of being lowered in boiler height, we have to install additional tube bundle in back-pass heating surface for increasing the heat transfer of boiler, which causes the noise and vibration from combustion gas. When the combustion gas passes through the back-pass tube bundle in specified load of commercial boiler, this paper analyzes the acoustic characteristics between vortex-shedding frequency and natural frequency in tube bundle cavity. The case study reduce the resonance by changing natural frequency characteristics of tube-bundle cavity using a way to install ant-noise baffle in the direction of combustion gas flow.

  • PDF

Combustion and Emission Characteristics of a Natural Gas Engine under Different Operating Conditions

  • Cho, Haeng-Muk;He, Bang-Quan
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.95-101
    • /
    • 2009
  • Natural gas is a promising alternative fuel of internal combustion engines. In this paper, the combustion and emission characteristics were investigated on a natural gas engine at two different fuel injection timings during the intake stroke. The results show that fuel injection timing affects combustion processes. The optimum spark timing (MBT) achieving the maximum indicated mean effective pressure (IMEP) is related to fuel injection timing and air fuel ratio. At MBT spark timing, late fuel injection timing delays ignition timing and prolongs combustion duration in most cases. But fuel injection timing has little effect on IMEP at fixed lambdas. The coefficient of variation (COV) of IMEP is dependent on air fuel ratio, throttle positions and fuel injection timings at MBT spark timing. The COV of IMEP increases with lambda in most cases. Late fuel injection timings can reduce the COV of IMEP at part loads. Moreover, engine-out CO and total hydrocarbon (THC) emissions can be reduced at late fuel injection timing.