• Title/Summary/Keyword: Gas Chromatography-Mass Spectroscopy

Search Result 97, Processing Time 0.031 seconds

Terpenoid Analysis of the Normal, Damaged Needle and Pinecone in Pinus densiflora (소나무의 정상(正常)잎, 피해(被害)잎 및 솔방울의 테르페노이드성분(成分) 분석(分析))

  • Choi, Choo-I-Boo;Hwang, Byung-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.72-79
    • /
    • 1994
  • To analyze terpene components, the essentail oil were extracted with steam distillation method from normal needle, damaged needle and pinecone of Pinus densiflora. The extracted essential oil was analyzed by gas chromatography and gas chromatography-mass spectroscopy. The results were summarized as follows; 1. Normal needles involve 43 kinds of terpene components, but damaged needles contained only 29 kinds. The most abundant components of normal and damaged needles were respectable ${\alpha}$-pinene and caryophyllene oxide. ${\alpha}$-pinene content in normal meedles amounted to 15.99 percents and caryophyllene oxide in damaged was 8.15 percents. 2. Pinecone showed 23 kinds of terpene components and among them the most abundant component was ${\beta}$-phellandrene, of which content showed 19.31 percents. 3. In normal needles, excluding ${\alpha}$-pinene, the contents of 8 kinds of other monoterpenes, reached to 48 percents of the total terpenes, 4. In damaged needles, excluding ${\alpha}$-pinene, the contents of 4 kinds of other monoterpenes, reached to 11 percents of the total terpenes. 5. In pinecone, excluding camphene, the contents of 6 kinds of other monoterpenes, reached to 58 percents of the total terpenes.

  • PDF

Qualitative and Quantitative Analyses of Volatile Compounds in Cream Cheese and Cholesterol-removed Cream Cheese Made from Whole Milk Powder

  • Jeon, Seon-Suk;Lee, Seung-Joo;Ganesan, Palanivel;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.879-885
    • /
    • 2011
  • This study was to identify and quantify the flavor compounds in cream cheese and cholesterol-removed cream cheese made from whole milk powder stored at $7^{\circ}C$ for 4 wk. Flavor compounds of cream cheese were identified using gas chromatography mass spectroscopy and quantified by gas chromatography. The tentatively identified flavor compounds were mainly eight from fatty acids in cream cheese made from whole milk powder (CCWMP) and nine from fatty acids in cholesterol-removed cream cheese made from whole milk powder (CRCCWMP). In quantitative analysis of the flavor compounds, most of the volatile compounds were slightly increased during storage. N-Decanoic acid was produced only in CCWMP. On the basis of the results, it was concluded that the quality and quantity of flavor compounds in CCWMP and CRCCWMP have almost no adverse effects in comparison with that of whole milk-made cream cheese.

New Family of Monoglucosylglyceride Diacyl Glycerol Lipids Containing Very Long Chain bifunctional Acyl Chains in Sarcina ventriculi

  • Jung, Seun-Ho;Chi, Yong-Hoon;Chang, Yoon-Seok;Yi, Dong-Heui;Kwon, Tae-Jong;Hollingsworth, Rawle I.
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.386-393
    • /
    • 2000
  • Recent research on the fatty acyl chains in the membrane lipids in Sarcina ventriculi has shown that unusually long chain bifunctional fatty acyl components are the major components of the total lipid. However, these studies did not yield any information on the complete structures of the lipid species containing these fatty acids. In this study, the structures of a new family of glucolipids containing bifunctional acyl chains are described. These structures were determined using NMR(Nuclear Magnetic Resonance) Spectroscopy, GC (Gas Chromatography)/MS (Mass Spectrometry), FTIR (Fourier Transform Infrared) spectroscopy, and FAB (Fast Atom Bombardment) mass spectrometric studies. One of the major bifunctional acyl components of the $\alpha$-glucolipids was an $\omega$-formylmethyl ester indicating the presence of plasmalogen. The general structure of the lipid components was one in which the two head groups were separated by a membrane-spanning acyl species. One head group component is a glycerol moiety of each head group, and the other is a glyceryl clucoside. Two regular chain fatty acids, one on the glycerol moiety of each head group, are also present and meet in the middle of the membrane, roughly equidistant from each head group.

  • PDF

Classification of Red Wines by Near Infrared Transflectance Spectroscopy

  • W.Guggenbichler;Huck, C.W.;M.Popp;G.K.Bonn
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1516-1516
    • /
    • 2001
  • During the recent years, wine analysis has played an increasing role due the health benefits of phenolic ingredients in red wine [1]. On the other hand there is the need to be able to distinguish between different wine varieties. Consumers want to know if a wine is an adulterated one or if it is based on the pure grape. Producers need to certificate their wines in order to ensure compliance with legal regulations. Up to now, the attempts to investigate the origin of wines were based on high-performance liquid chromatography (HPLC), gas chromatography (GC) and pyrolysis mass spectrometry (PMS) [l,2,3]. These methods need sample pretreatment, long analysis times and therefore lack of high sample throughput. In contradiction to these techniques using near infrared spectroscopy (NIRS), no sample pretreatment is necessary and the analysis time for one sample is only about 10 seconds. Hence, a near infrared spectroscopic method is presented that allows a fast classification of wine varieties in bottled red wines. For this, the spectra of 50 bottles of Cabernet Sauvignon, Lagrein and Sangiovese (Chianti) were recorded without any sample pretreatment over a wavelength range from 1000 to 2500 nm with a resolution of 12 cm$\^$-1/. 10 scans were used for an average spectrum. In order to yield best reproducibility, wines were thermostated at 23$^{\circ}C$ and a optical layer thickness of 3 mm was used. All recorded spectra were partitioned into a calibration and validation set (70% and 30%). Finally, a 3d scatter plot of the different investigated varieties allowed to distinguish between Cabernet Sauvignon, Lagrein and Sangiovese (Chianti). Considering the short analysis times this NRS-method will be an interesting tool for the quality control of wine verification and also for experienced sommeliers.

  • PDF

In situ isolation and characterization of the biosurfactants of B. Subtilis

  • Akthar, Wasim S.;Aadham, Mohamed Sheik;Nisha, Arif S.
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.215-232
    • /
    • 2020
  • Crude oils are essential source of energy. It is majorly found in geographical locations beneath the earth's surface and crude oil is the main factor for the economic developments in the world. Natural crude oil contains unrefined petroleum composed of hydrocarbons of various molecular weights and it contains other organic materials like aromatic compounds, sulphur compounds, and many other organic compounds. These hydrocarbons are rapidly getting degraded by biosurfactant producing microorganisms. The present study deals with the isolation, purification, and characterization of biosurfactant producing microorganism from oil-contaminated soil. The ability of the microorganism producing biosurfactant was investigated by well diffusion method, drop collapse test, emulsification test, oil displacement activity, and blue agar plate method. The isolate obtained from the oil contaminated soil was identified as Bacillus subtilis. The identification was done by microscopic examinations and further characterization was done by Biochemical tests and 16SrRNA gene sequencing. Purification of the biosurfactant was performed by simple liquid-liquid extraction, and characterization of extracted biosurfactants was done using Fourier transform infrared spectroscopy (FTIR). The degradation of crude oil upon treatment with the partially purified biosurfactant was analyzed by FTIR spectroscopy and Gas-chromatography mass spectroscopy (GC-MS).

Pharmacokinetics of Propentofylline and the Quantitation of Its Metaolite Hydroxypropentofylline in Human Volunteers

  • Kwon, Oh-Seung;Chung, Youn-Bok;Kim, Min-Hee;Hahn, Hoh-Gyu;Rhee, Hee-Kyung;Ryu, Jae-Chun
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.698-702
    • /
    • 1998
  • Propentofylline (PPF, 3-methyl-1-(5-oxohexyl)-7-propylxanthine) has been reported to be effective for the treatment of both vascular dementia and dementia of the Alzheimer type. The pharmacological effects of PPF may be exerted via the stimulation of nerve growth factor, increased cerebral blood flow, and inhibition of adenosine uptake. The objectives of this experiment are to determine the kinetic behavior of PPF, to identify, and to quantify its metabolite in human. Blood samples were obtained from human volunteers following oral administration of 200mg of PPF tablets. For the identification and quantification of the metabolite, 3-methyl-1-(5-hydroxyhexyl)-7-propylxanthine (PPFOH), PPFOH was synthesized and identified by gas chromatography/mass spectroscopy (GC/MS) and $^1H$-nuclear magnetic resonance spectroscopy. The molecular weight of synthesized metabolite is 308 dalton. The PPF and PPFOH in plasma were extracted with diethyl ether and identified by electron impact GC/MS. The plasma concentrations of PPF and PPFOH were determined by gas chromatography/nitrogen phosphorus detector in plasma and their pharmacokinetic parameters were determined. The mean half-life of PPF was 0.74 hr. The areas under the curve (AUCs) of PPF and PPFOH were 508 and 460ng.hr/ml, respectively. $C_{max}$ of PPF was about 828.4ng/ml and the peak concentration was achieved at about 2.2 hr ($T_{max}$). These results indicate that PPF is rapidly disappeared from blood due to extensive metabolism into PPFOH.

  • PDF

The study of chemical substances in Hymenoxys brachyactis(II) (Hymenoxys brachyactis의 화학성분에 관한 연구(II))

  • Lee, Sang-Jun;Kim, Sung-Han;Kim, Jung-Han
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.473-477
    • /
    • 1995
  • The dichloromethane extracts of the above ground parts of Hymenoxys brachyactis afforded three sesquiterpene lactones already reported, one new sesquiterpene lactone, biennin C and hispidulin as known toxic flavone. Structures of all compounds were established by spectroscopy and biennin C was determined as an adduct of the modified pseudoguanolide and hymenoxon by Gas Chromatograpy and MS spectrometer These sesquiterpene lactones have the same ${\alpha},{\beta}$-unsaturated functional group like that of hymenovin which has been known as major toxic constituent of important livestock poison. And biennin C is also considered as toxic compound because of toxic hymenoxon.

  • PDF

Analysis of COPD Patient's Exhaled Breath Using Sensor Array (센서 어레이를 사용한 COPD 환자의 호기분석)

  • Yu, Joon-Boo;Lee, Shin-Yup;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-222
    • /
    • 2013
  • The exhaled breath contains gases generated from human body. When disease occurs in the body, exhaled breath may include gas components released from disease metabolism. If we can find specific elements through analysis of the exhaled gases, this approach is an effective way to diagnose the disease. The lung function has a close relationship with exhalation. Exhaled gases from COPD (Chronic Obstructive Pulmonary Disease) patients can be analyzed by gas chromatography-mass spectroscopy (GC-MS) and a gas sensor system. The exhaled breath for healthy person and COPD patients had different components. Significantly more benzendicarboxylic acid was detected from COPD patients than in healthy persons. In addition, patients had a variety of decane. Phosphorous compounds with different isomers were detected from patients. The results obtained by gas sensor system were processed by PCA (Principal Component Analysis). The PCA results revealed distinct difference between the patients and healthy people.

Determination of Plasticizers included in Balloon by Solid Phase Microextraction and Gas Chromatography with Mass Spectrometric Detection (SPME-GC-MS를 이용하여 풍선에 포함된 가소제의 분석)

  • Park, Hyun-Mee;Kim, Ji-Hyun;Ryu, Jae-Chun;Kim, Young-Man;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-49
    • /
    • 2001
  • Solid-phase microextraction (SPME) with $85{\mu}m$ polyacrylate fiber, coupled to gas chromatography-mass spectrometry was used to analyze the plasticizers contained in balloon samples. The balloons were identified to be made of polyisoprene by IR spectroscopy. The plasticizers extracted from the balloon samples soaked in acetone-added water solvent for an hour were quantified by external standard method using nine kinds of plasticizers. The quantification method was validated for standard plasticizers in the range of $0.25-25{\mu}g/g$. The detection limits were $0.11-0.38{\mu}g/g$ for different plasticizers. The RSDs for the reproducibility of this quantitation method were 3.7-14.2%. A few of balloons included risky level of plasticizer concerned as and endocrine disrupter, and it is necessary to regulate these products.

  • PDF

Sensing of the Insecticide Carbofuran Residues by Surface Plasmon Resonance and Immunoassay (표면플라즈몬공명과 효소면역분석법을 이용한 살충제 카보후란 잔류물 검출)

  • Yang G. M.;Cho N. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.333-339
    • /
    • 2005
  • The pesticide is raising public interest in the world, because it causes damage to an environmental pollution and the human health remaining agricultural products and an ecosystem, in spite of the advantages. Particularly, each country restricts the residual pesticide and induces observance about the safety and usage standard so that they can control the amount of pesticide used and defend the safety of agricultural products. The habitual practice for the analysis of the residual pesticide depends on GC (gas chromatography), HPLC (high performance liquid chromatography) and GC/MS (gas chromatography/mass spectroscopy), which triturate the fixed quantity of samples, abstract and purify as a suitable organic solvent. These methods have the highly efficient in aspects of sensitivity and accuracy. On the other hand, they need the high cost, time consuming, much effort, expensive equipment and the skillful management. Carbofuran is highly toxic by inhalation and ingestion and moderately toxic by dermal absorption. As with other carbamate compounds, it is metabolized in the liver and eventually excreted in the urine. The half-life of carbofuran on crops is about 4 days when applied to roots, and longer than 4 days if applied to the leaves. This research was conducted to develop immunoassay for detecting carbofuran residue quickly on the basis of surface plasmon resonance and to evaluate the measurement sensitivity. Gold chip used was CM5 spreaded dextran on the surface. An applied antibody to Immunoassay was GST (glutathione-s-transferase). The association and the dissociation time were 176 second and 215 second between GST and carbofuran. The total analysis time using surface plasmon resonance was 13 minutes including regeneration time, on the other hand HPLC and GC/MS was 2 hours usually. The minimum detection limit of a permissible amount for carbofuran in the country is 0.1 ppm. The immunoassay method using surface plasmon resonance was 0.002 ppm.