• 제목/요약/키워드: Gas Chromatography/mass spectrometry

Search Result 978, Processing Time 0.022 seconds

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

Antioxidant Activities of Essential Oils from Citrus × natsudaidai (Yu. Tanaka) Hayata Peels at Different Ripening Stage

  • YANG, Jiyoon;CHOI, Won-Sil;LEE, Su-Yeon;KIM, Minju;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.272-282
    • /
    • 2022
  • The essential oil extracted from Citrus × natsudaidai (Yu. Tanaka) Hayata peels is known to have various biological properties. However, the chemical composition of essential oil is influenced by the ripening stages of fruits, which then affects related biological activities. This study investigates the antioxidant activities of essential oils extracted from Citrus × natsudaidai peels at different ripening stages (immature, mature, and overripe). The essential oils were extracted using the hydro-distillation method. As a result of gas chromatography-mass spectrometry (GC-MS) analysis, d-limonene was dominant and was increased as matured. However, 𝛄-terpinene was decreased. The antioxidant properties and their total phenolic content (TPC) were influenced by the ripening stages. The TPC was highest in the immature stage of essential oil (1,011.25 ± 57.15 mg GAE/100 g). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was excellent in the immature stage (EC50 = 15.91 ± 0.38 mg/mL). 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity was superior in overripe stage (EC50 = 20.43 ± 0.37 mg/mL). The antioxidant activity measured using ferric reducing antioxidant power (FRAP) assay showed higher values for the essential oils in immaturity (1,342.37 ± 71.07 mg Fe2+/100 g). Comprehensively, the essential oil in the immature stage showed the best antioxidant activity. Finally, knowing the chemical composition and antioxidant activity at different ripening stages will provide data for selecting the right fruit.

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees

  • Dekebo, Aman;Kim, Min-Jung;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.62-75
    • /
    • 2022
  • Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.

Investigation of Immunostimulatory Effects of Heat-Treated Lactiplantibacillus plantarum LM1004 and Its Underlying Molecular Mechanism

  • Bae, Won-Young;Jung, Woo-Hyun;Shin, So Lim;Kwon, Seulgi;Sohn, Minn;Kim, Tae-Rahk
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1031-1045
    • /
    • 2022
  • Postbiotics are defined as probiotics inactivated by heat, ultraviolet radiation, sonication, and other physical or chemical stresses. Postbiotics are more stable than probiotics, and these properties are advantageous for food additives and pharmacological agents. This study investigated the immunostimulatory effects of heat-treated Lactiplantibacillus plantarum LM1004 (HT-LM1004). Cellular fatty acid composition of L. plantarum LM1004 isolated form kimchi was analyzed by gas chromatography-mass spectrometry detection system. The nitric oxide (NO) content was estimated using Griess reagent. Immunostimulatory cytokines were evaluated using enzyme-linked immunosorbent assay. Relative protein expressions were evaluated by western blotting. Phagocytosis was measured using enzyme-labelled Escherichia coli particles. L. plantarum LM1004 showed 7 kinds of cellular fatty acids including palmitic acid (C16:0). The HT-LM1004 induced release of NO and upregulated the inducible NO synthase in RAW 264.7 macrophage cells. Tumor necrosis factor-α and interleukin-6 levels were also increased compared to control (non-treated macrophages). Furthermore, HT-LM1004 modulated mitogen-activated protein kinase (MAPK) subfamilies including p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase. Therefore, these immunostimulatory effects were attributed to the production of transcriptional factors, such as nuclear factor kappa B (NF-κB) and the activator protein 1 family (AP-1). However, HT-LM1004 did not showed significant phagocytosis of RAW 264.7 macrophage cells. Overall, HT-LM1004 stimulated MAPK/AP-1 and NF-κB expression, resulting in the release of NO and cytokines. These results will contribute to the development of diverse types of food and pharmacological products for immunostimulatory agents with postbiotics.

Assessing the Formation of Polycyclic Aromatic Hydrocarbons in Grilled Beef Steak and Beef Patty with Different Charcoals by the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Method with Gas Chromatography-Mass Spectrometry

  • Ali Samet Babaoglu
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.826-839
    • /
    • 2023
  • This study investigated the effects of different charcoals on the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) in grilled beef steaks and beef patties. Seven different charcoals were used as follows: from oak wood (C1), from orange wood (C2), from Valonia oak wood (C3), from Marabu wood (C4), extruded charcoal from beech wood (C5), from coconut shells (C6), and from hazelnut shells (C7). The grilling times for each charcoal type were 6 min for the beef patties and 7 min for the beef steaks, until the internal temperature reached at least 74℃. The total concentration of 16 PAHs (PAH16) in beef steaks grilled with C1 (35.75 ㎍/kg) and C7 (36.39 ㎍/kg) was higher than that of C3 (23.80 ㎍/kg) and C6 (24.48 ㎍/kg; p<0.05). The highest amounts of PAH16 (216.40 ㎍/kg) were determined in the beef patty samples grilled using C5 (p<0.05). The summation of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene, referred to as PAH4, was not detected in any of the beef steaks, whereas it was determined in the beef patties grilled with C2 (7.72 ㎍/kg) and C5 (22.95 ㎍/kg; p<0.05). The PAH16 concentrations of the beef patty samples in each charcoal group were significantly higher compared to the beef steaks (p<0.05). To avoid the formation of high PAH levels, the use of extruded charcoal and hazelnut shell charcoal should therefore be avoided when charcoal grilling beef steaks and beef patties, and low-fat meat products should be preferred.

Residue Monitoring and Dietary Risk Evaluation of Fungicide Propiconazole in Leafy Vegetables under Greenhouse Conditions

  • Lawal Abdulkareem;Ji-Eun Oh;Se-Yeon Kwak;Sang-Hyeob Lee;Jae-Won Choi;Aniruddha Sarker;Kee Sung Kyung;Tae Hwa Kim;Jang-Eok Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.193-202
    • /
    • 2023
  • Residue monitoring of propiconazole (PCZ) in cabbage, shallot, and spinach was conducted under multi-trial greenhouse conditions. This study aimed to understand the fate of the applied fungicide in these vegetables. Furthermore, the associated health risk of PCZ in leafy vegetables was assessed through dietary risk assessment. Commercially available PCZ (22% suspension concentrate) was administered thrice according to the OECD fungicide application interval guideline. The plant samples were extracted using a slightly modified QuEChERS technique and analyzed using gas chromatography-tandem mass spectrometry. The average PCZ recovery was between 84.5% and 117.6%, with a <5% coefficient of variance. The dissipation of PCZ residue in cabbage, shallot, and spinach after 14 days was 96%, 90%, and 99%, respectively, with half-lives of <5 days. Meanwhile, dietary risk assessments of PCZ residues in the studied vegetables using the risk quotient (RQ) were significant < 100 (RQ < 100). Thus, the population groups considered in this study were not at substantial risk from consuming leafy vegetables sprayed with PCZ following critical, good agricultural practices.

Antagonistic Potentiality of Actinomycete-Derived Extract with Anti-Biofilm, Antioxidant, and Cytotoxic Capabilities as a Natural Combating Strategy for Multidrug-Resistant ESKAPE Pathogens

  • Mohamed H. El-Sayed;Fahdah A. Alshammari;Mohammed H. Sharaf
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • The global increase in multidrug-resistant (MDR) bacteria has inspired researchers to develop new strategies to overcome this problem. In this study, 23 morphologically different, soil-isolated actinomycete cultures were screened for their antibacterial ability against MDR isolates of ESKAPE pathogens. Among them, isolate BOGE18 exhibited a broad antibacterial spectrum, so it was selected and identified based on cultural, morphological, physiological, and biochemical characteristics. Chemotaxonomic analysis was also performed together with nucleotide sequencing of the 16S rRNA gene, which showed this strain to have identity with Streptomyces lienomycini. The ethyl acetate extract of the cell-free filtrate (CFF) of strain BOGE18 was evaluated for its antibacterial spectrum, and the minimum inhibitory concentration (MIC) ranged from 62.5 to 250 ㎍/ml. The recorded results from the in vitro anti-biofilm microtiter assay and confocal laser scanning microscopy (CLSM) of sub-MIC concentrations revealed a significant reduction in biofilm formation in a concentration-dependent manner. The extract also displayed significant scavenging activity, reaching 91.61 ± 4.1% and 85.06 ± 3.14% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), respectively. A promising cytotoxic ability against breast (MCF-7) and hepatocellular (HePG2) cancer cell lines was obtained from the extract with IC50 values of 47.15 ± 13.10 and 122.69 ± 9.12 ㎍/ml, respectively. Moreover, based on gas chromatography-mass spectrometry (GC-MS) analysis, nine known compounds were detected in the BOGE18 extract, suggesting their contribution to the multitude of biological activities recorded in this study. Overall, Streptomyces lienomycini BOGE18-derived extract is a good candidate for use in a natural combating strategy to prevent bacterial infection, especially by MDR pathogens.

Korean Red Ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation

  • Hee Jin Kim;Min Yeong Lee;Gyu Ri Kim;Hyun Jun Lee;Leandro Val Sayson;Darlene Mae D. Ortiz;Jae Hoon Cheong;Mikyung Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.583-592
    • /
    • 2023
  • Background: Alcohol is one of the most commonly used psychoactive drugs. Due to its addictive characteristics, many people struggle with the side effects of alcohol. Korean Red Ginseng (KRG) is a traditional herbal medicine that is widely used to treat various health problems. However, the effects and mechanisms of KRG in alcohol-induced responses remain unclear. Therefore, the purpose of this study was to investigate the effects of KRG in alcohol-induced responses. Methods: We investigated two aspects: alcohol-induced addictive responses and spatial working memory impairments. To determine the effects of KRG in alcohol-induced addictive responses, we performed conditioned place preference tests and withdrawal symptom observations. To assess the effects of KRG in alcohol-induced spatial working memory impairment, Y-maze, Barnes maze, and novel object recognition tests were performed using mice after repeated alcohol and KRG exposure. To investigate the potential mechanism of KRG activity, gas chromatography-mass spectrometry and western blot analysis were performed. Results: KRG-treated mice showed dose-dependent restoration of impaired spatial working memory following repeated alcohol exposure. Furthermore, withdrawal symptoms to alcohol were reduced in mice treated with KRG and alcohol. The PKA-CREB signaling pathway was activated after alcohol administration, which was reduced by KRG. However, the levels of inflammatory cytokines were increased by alcohol and decreased by KRG. Conclusion: Taken together, KRG may alleviate alcohol-induced spatial working memory impairments and addictive responses through anti-neuroinflammatory activity rather than through the PKA-CREB signaling pathway.

A Pilot Study Exploring Temporal Development of Gut Microbiome/Metabolome in Breastfed Neonates during the First Week of Life

  • Imad Awan;Emily Schultz;John D. Sterrett;Lamya'a M. Dawud;Lyanna R. Kessler;Deborah Schoch;Christopher A. Lowry;Lori Feldman-Winter;Sangita Phadtare
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.2
    • /
    • pp.99-115
    • /
    • 2023
  • Purpose: Exclusive breastfeeding promotes gut microbial compositions associated with lower rates of metabolic and autoimmune diseases. Its cessation is implicated in increased microbiome-metabolome discordance, suggesting a vulnerability to dietary changes. Formula supplementation is common within our low-income, ethnic-minority community. We studied exclusively breastfed (EBF) neonates' early microbiome-metabolome coupling in efforts to build foundational knowledge needed to target this inequality. Methods: Maternal surveys and stool samples from seven EBF neonates at first transitional stool (0-24 hours), discharge (30-48 hours), and at first appointment (days 3-5) were collected. Survey included demographics, feeding method, medications, medical history and tobacco and alcohol use. Stool samples were processed for 16S rRNA gene sequencing and lipid analysis by gas chromatography-mass spectrometry. Alpha and beta diversity analyses and Procrustes randomization for associations were carried out. Results: Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were the most abundant taxa. Variation in microbiome composition was greater between individuals than within (p=0.001). Palmitic, oleic, stearic, and linoleic acids were the most abundant lipids. Variation in lipid composition was greater between individuals than within (p=0.040). Multivariate composition of the metabolome, but not microbiome, correlated with time (p=0.030). Total lipids, saturated lipids, and unsaturated lipids concentrations increased over time (p=0.012, p=0.008, p=0.023). Alpha diversity did not correlate with time (p=0.403). Microbiome composition was not associated with each samples' metabolome (p=0.450). Conclusion: Neonate gut microbiomes were unique to each neonate; respective metabolome profiles demonstrated generalizable temporal developments. The overall variability suggests potential interplay between influences including maternal breastmilk composition, amount consumed and living environment.

Concentrations and Exposure Levels via Intake of Phthalates in Dust Deposits in Indoor Children's Living Areas: Focusing on DEHP (어린이가 생활하는 실내공간의 바닥먼지 중 프탈레이트 농도와 노출수준: DEHP를 중심으로)

  • Jeon, Seong-ho;Kim, Kyung-hee;Choi, Jae-wook
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.1
    • /
    • pp.52-58
    • /
    • 2022
  • Background: Few studies have evaluated the exposure to phthalates via inhalation of floor dust in children's living areas. Objectives: This study evaluated the concentration and exposure level of phthalates emitted from indoor floor dust in children's living areas. Methods: This study utilized the results of a survey conducted by the Ministry of Environment in 2019. Indoor dust was collected from 150 households with children aged 3~7 and 67 daycare centers or local children's centers by using vacuum cleaners. It was analyzed by gas chromatography mass spectrometry. Six types of phthalates were analyzed: Bis (2-ethylhexyl) phthalate (DEHP), Dibutyl phthalate (DBP), Benzyl butyl phthalate (BBP), Di-N-octyl phthalate (DNOP), Diisononyl phthalate (DINP), Di -isodecyl phthalate (DIDP). Results: The medians of DEHP concentrations were 1,028 and 1,937 mg/kg in homes and daycare centers, respectively. The median and maximum values of daily intake were calculated by applying the median and 95th percentile values (the upper 5% of the total concentration) in dust measured in the homes. The DEHP median value was 1.6 ㎍/kg/bw/day, and a maximum A value of 7.8 ㎍/kg/bw/day was calculated. When the childcare center values were applied, the median daily intake of DEHP was 3.1 ㎍/kg/bw/day and the maximum value was 29.2 ㎍/kg/bw/day. As a result of calculating the daily intake by integrating the values of home and childcare facilities, the median and maximum values of daily intake were 1.9 and 10.9 ㎍/kg/bw/day, respectively. Conclusions: This study derives phthalate concentrations among the floor dust in homes and childcare facilities where children mainly spend time, and suggests their intake of phthalates through this. In particular, it was newly suggested that the phthalate concentrations in homes and childcare facilities are different, resulting in differences in intake.