• Title/Summary/Keyword: Gas Burner Heating

Search Result 50, Processing Time 0.022 seconds

Fundamental Study for Development of Pre-Heater for Warm In-Place Recycling in Korea (국내 현장중온재생공법의 프리히터 개발을 위한 기초연구)

  • Kim, Dae-Hun;Kim, Seung-Hoon;Kwon, Soo-Ahn;Kim, Yongjoo;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.31-37
    • /
    • 2015
  • PURPOSES : To design a pre-heater for warm in-place recycling equipment, three different heating systems were evaluated to determine their thermal efficiency. METHODS: In this study, a $30cm{\times}30cm{\times}15cm$ wheel-tracking specimen was used to measure the inner temperature as a function of the heating system. The inner temperature of the specimen was measured with a data logger at the surface, and at depths of 1cm, 2cm, 3cm, 4cm, and 5cm. To evaluate the thermal efficiency, the researchers used three different types of equipment, namely, IR, a heating wire, and a gas burner. RESULTS: The IR heating system exhibits a higher level of performance than the others to achieve the target temperature at a depth of 5cm in the specimen. The gas burner system was capable of heating the surface to a temperature of up to $600^{\circ}C$. The other types, however, cannot heat the surface up to 600. The thermal efficiencies were measured based on the laboratory conditions. CONCLUSIONS: To find the most effective system for application to the development of a pre-heater for warm in-place recycling, various systems (IR, heating wire, gas burner) were examined in the laboratory. As a result, it was found that the hot plate of a gas burner system provides the highest temperature at the surface of the asphalt but, of all the systems, the IR system provides the best internal temperature increase rate. Furthermore, a gas burner can age the asphalt binder of the surface layer as a result of the high temperature. However, the gas burner cannot attain the target temperature at 5cm. The IR system, on the other hand, is effective at increasing the internal temperature of asphalt.

Derivation of Optimal Design Variables Considering Carbon Monoxide Emission Characteristics of Commercial Gas Stove Burners (업소용 가스레인지 버너의 일산화탄소 배출 특성을 고려한 최적 설계변수 도출)

  • Il Kon Kim;Taehoon Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Commercial gas stoves feed primary air to the burner and burn the fuel-air mixture in a partially premixed combustion. This mechanism produces carbon monoxide during combustion. In this study, design parameters of a commercial gas stove were optimized by considering the carbon monoxide emission. Gas consumption rate, carbon monoxide emission, and water boiling temperature as a heating performance were determined. Carbon monoxide emission was measured using a Korean Industrial Standards standard collector. Water boiling temperature was measured by first soaking the pot in water for approximately 10 min and then heating the pot filled with water. A thermocouple was installed inside the pot. Carbon monoxide increased as the nozzle diameter was increased and the burner-pot height was decreased. This result was due to the insufficient mixing between the fuel and air. Heating performance was enhanced when the nozzle diameter was increased and the burner-pot height was decreased. However, the heating performance deteriorated when the nozzle diameter was 1.8 mm and the burner-pot height was reduced to 50 mm. This phenomenon was due to the formation of a flame on the side of the pot. A merit factor was defined to find the optimal design parameters to satisfy gas consumption rate, carbon monoxide emission, and heating performance. Optimal design values were established to be a nozzle diameter of 1.5 mm and a burner-pot height of 60 mm.

Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers (개질기용 예혼합 버너의 화염형태 및 안정성 특성)

  • Lee, Pil-Hyong;Park, Bong-Il;Jo, Soon-Hye;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

A Study on the Design and Development of Gas Burner for Gas Furnace (가스온풍기용 가스버너의 설계 및 개발에 관한 연구)

  • 박용호;염만오;심성훈;엄기훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of this study is to modify the kerosene furnace, which is forced flue type with 15000kcal capacity, to gas furnace satisfying for CITY gas, LNG gas and LPG gas. The gas furnace, a kind of gas appliance, is mainly used for heating houses by combusion of gas. This paper describes briefly the design technology for gas burner which is most important in replacing kerosene fuel with gas fuel. Especially, the design for gas nozzle is constructed by theoretical and experimental method. It is found that the experimental results of the modified gas burner are good agreement with the theoretical results for calorific value and combustion efficiency. The result of this study will contribute in the design skill and of gas burner and similar gas appliance, and the pursuit for reduction of fuel cost as well as atmospheric pollution.

  • PDF

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

Development of the Natural Gas Burner for Modified Chemical Deposition Processes (화학증착용 천연가스버너 개발)

  • You, Hyun-Seok;Lee, Joong-Seong;Han, Jeong-Ok;Choi, Dong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.75-81
    • /
    • 2001
  • MCVD(modified chemical vapor deposition) used in making optical-fiber currently utilizes the hydrogen-oxygen burner as a energy supply source. To improve the productivity and to reduce the manufacturing cost of optical-fiber, a natural gas-oxygen burner has been developed. The manufacturing processes of optical-fiber consist of vapor deposition, collapse and drawing processes. Among these processes, the vapor deposition and the collapse processes are important in terms of improving the productivity and saving the production cost. The vapor deposition and collapse processes are performed by combustion heat and flame force supplied by a burner. So the flame force of the burner used in these processes is required to have an optimal and consistent value in order to allow uniform heating and collapse of quartz tube. In this regard, the momentum ratio of natural gas and oxygen has been optimally determined by modification of a burner and the inlet flow pass also has been modified.

  • PDF

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler (자트로파 유(Crude Jatropha Oil)에 대한 보일러 직접 연소 특성)

  • Kang, Sae-Byul;Kim, Jong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2934-2939
    • /
    • 2008
  • We conducted a test of a direct burning of crude Jatropha oil (CJO) in a commercial boiler system. The fuel, crude Jatropha oil is not biodiesel which comes from transeterification process of bio oil, but it is pure plant oil. The higher heating value (HHV) of the CJO is 39.3 MJ/kg (9,380 kcal/kg) and is higher than that of a commercial heating oil, 37.9 MJ/kg. The kinematic viscosity of CJO is 36.2 mm2/s at $40^{\circ}C$ and 8.0 mm2/s at $100^{\circ}C$. The burner used in the test is a commercial burner for a commercial heatingoil and its capacity is 140 kW (120,000 kcal/h). We did a preliminary test whether the combustion is stable or not. The preliminary test was a kind of open air combustion test using the commercial burner with crude Jatropha oil. We found that the combustion can be stable if the crude Jatrophaoil temperature is higher than $90^{\circ}C$. We measured the flue gas concentration by using a gas analyzer. The NOx concentration is $80{\sim}100\;ppm$ and CO concentration is nearly 0 ppm at flue gas O2 concentration of 3.0 and 4.5%.

  • PDF

Thermal Characteristic Evaluation of Functionally Graded Composites for PSZ/Metal

  • Lim, Jae-Kyoo;Song, Jun-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.298-305
    • /
    • 2000
  • The functionally graded material (FGM) is the new concept for a heat resisting material. FGM consists of ceramics on one side and metal on the other. A composition and microstructure of an intermediate layer change continuously from ceramics to metal at the micron level. This study is carried out to analyze the thermal shock characteristics of functionally graded PSZ/ metal composites. Heat-resistant property was evaluated by gas burner heating test using $C_2H_2/O_2$ combustion flame. The ceramic surface was heated with burner flame and the bottom surface cooled with water flow. Also, the composition profile and the thickness of the graded layer were varied to study the thermo mechanical response. Furthermore, this study carried out the thermal stress analysis to investigate the thermal characteristics by the finite element method. Acoustic emission (AE) monitoring was performed to detect the microfracture process in a thermal shock test.

  • PDF

Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer (개질기용 Anode Off Gas의 연소특성에 관한 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

A Study on the Furnace Heating Characteristics Using Oxy-fuel Combustion (순산소 연소를 이용한 연소로 가열특성에 관한 실험적 연구)

  • Jeong, Yu-Seok;Lee, Eun-Kyung;Ko, Chang-Bok;Noh, Dong-Soon;Jang, Byung-Lok;Han, Hyung-Kee
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.229-234
    • /
    • 2006
  • The oxy-fuel combustion heating characteristics is investigated experimentally by measuring furnace and steel temperature variations for batch type furnace simulator with a specially designed low NOx oxy-fuel burner. Economics of using oxy-fuel combustion is confirmed and, the furnace and steel temperature variations for different heating conditions are compared to deduce optimal heating control pattern for energy savings and rapid uniform heating. High $CO_2$ concentration (> 80-90%), low NOx (< 40ppm) and CO (< 10ppm) are measured in the flue gas. Temperature differences (< $30^{circ}C$) inside the furnace and steel are reduced relatively by increasing the burner jet momentum.

  • PDF