• Title/Summary/Keyword: Gas Atomization

Search Result 389, Processing Time 0.024 seconds

Spray Characteristics of Gas-Centered Swirl Coaxial Injectors according to Injection Conditions (분무 조건에 따른 기체 중심 스월 동축형 분사기의 분무 특성)

  • Park, Gujeong;Lee, Jungho;Lee, Ingyu;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.167-173
    • /
    • 2014
  • The spray characteristics of Gas-Centered Swirl Coaxial Injector was investigated that there were different characteristics with or without gas flow. As gas flow was accelerated, the momentum of gas was transferred to the momentum of liquid in the low liquid Reynolds number. Therefore, the axial velocity of liquid was increased and the measured value was smaller than without gas flow. However, in the high momentum flux ratio, the momentum transfer hardly occurred and the results had constant values. As the recess length was increased, the mixing area of gas and liquid also was increased, the results were decreased.

The Effect of Ambient Gas Density on the Development of Impinging Diesel Spray (분무실 밀도 변화가 충돌 디젤분무 특성에 미치는 영향)

  • Kim, J.H.;Lee, B.S.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.40-46
    • /
    • 1999
  • Experimental investigation of unsteady impinging diesel spray on the flat plate have been carried out using high speed camera and Malvern system. The density ratios of ambient gas to diesel fuel were varied using $N_2$ and Ar gas in the case of 14.9, 21.2, 28.4, 35.1, 40.4, and 50.1. With the increase of gas density ratio, the radial penetration is decreased due to the resistance of the ambient gas. With the increase of the gas density ratio and the distance between nozzle tip and flat plate, the height of spray is increased due to the entrance and circulation. With the increase of gas density ratio, SMD is decreased on the nearby position at the center of flat plate, but SMD is increased on the far position. As the distance between nozzle tip and flat plate is increased, SMD is always decreased.

  • PDF

Reduction of Grid Size Dependency in DME Spray Modeling with Gas-jet Model (가스 제트 모델을 이용한 DME 분무 해석의 격자 의존성 저감)

  • Oh, Yun-Jung;Kim, Sa-Yop;Lee, Chang-Sik;Park, Sung-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.170-176
    • /
    • 2010
  • This paper describes the grid-size dependency of the conventional Eulerian-Lagrangian method to spray characteristics such as spray penetration and SMD in modeling DME sprays. In addition, the reduction of the grid-size dependency of the present Gas-jet model was investigated. The calculations were performed using the KIVA code and the calculated results were compared to those of experimental result. The results showed that the conventional Eulerian-Laglangian model predicts shorter spray penetration for large cell because of inaccurate calculation of momentum exchange between liquid and gas phase. However, it was shown that the gas-jet model reduced grid-size dependency to spray penetration by calculating relative velocity between liquid and ambient gas based on gas jet velocity.

The experimental study of post injection effect on exhaust gas temperature and composition in a common rail DI diesel engine (커먼레일 디젤엔진에서 후분사 변화가 배출가스 성분 및 온도 변화에 미치는 영향에 대한 실험적 연구)

  • Chung, Jae-Wook;Chang, Dong-Hoon;Park, Jung-Kyu;Chun, Kwang-Min
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • The post injection effect to enhance aftertreatment devices' performance is essential to meet future stringent emission standards by controlling exhaust gas temperature and emission pollutants. The test has been made with commercial common rail diesel engine by post injection manipulation, to optimize exhaust gas temperature while guarantee low fuel penalty. The optimization was done at 1500, 2000 and 2500[rpm] for 2, 4[bar] condition which show low exhaust gas temperature. The main purpose of this test is dedicated to understand mechanism of exhaust gas temperature rise while optimizing

  • PDF

A Study on the Thrust Throttling Using Gas Injection in Swirl Injectors (기체주입을 이용한 와류형 분사기들에서의 가변추력 연구)

  • Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • Thrust throttling in a liquid rocket engine can be implemented via several ways such as high pressure drop injector, dual manifold, multiple chamber, pintle injector, and gas injection. Thrust throttling using gas injection controls thrust by usually injecting inert gas into propellant through an aerator to reduce the propellant's bulk density. In this study, the outside-in aerator was used in the propellant line to create two phase flow. Closed-type, open-type, and screw-type bi-swirl coaxial injectors were utilized for investigating throttling characteristics such as pressure drop, mixture density, and discharge coefficient according to gas-liquid mass ratio.

Improvement of Deposition Performance of Ultrasonic Spray Pyrolysis Deposition System through Atomizer Shape Modification (분무장치 형상 변경을 통한 초음파 열분해 증착 시스템의 증착 성능 개선)

  • Kim, Kyu-Eon;Lee, Jae-Hoo;Jeon, Jae-Keon;Park, Sung-Hwan;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.469-474
    • /
    • 2015
  • In ultrasonic spray pyrolysis deposition, a precursor solution is evaporated by an ultrasonic atomizer, then gas-carried into a furnace where the solute is separated from the water vapor. After condensation, polymerization, and nucleation, the solute oxide forms a thin film. To improve the deposition efficiency, the ultrasonic atomizer was studied to optimize the evaporated gas flow. The vat cover was redesigned, using three versions with different inlet factors being tested through a computational fluid dynamic analysis as well as a water evaporation experiment. The atomization rate with a hemispherical cover with a $30^{\circ}$ inlet was found to be 2.4 times higher than that with the original. This improvement was verified with fluorine-doped tin oxide spray pyrolysis deposition. The film obtained with the modified vat cover was 2.4 times thicker than that obtained with the original vat cover.

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.