• 제목/요약/키워드: Gas Atomization

검색결과 385건 처리시간 0.022초

Spray Characterization of Gas-Centered Swirl Coaxial Injectors Using an Optical Probe

  • ;홍문근;;;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.172-177
    • /
    • 2011
  • In order to investigate spray characteristics of gas-centered swirl coaxial injectors, a phase detection optical probe is employed to obtain the spatial evolution of the drop size and velocity. From the study on the optical probe responses under various impact angles, it is demonstrated that the drop size and velocity can be measured with an uncertainty less than 15% when the probe axis remains within about ${\pm}15^{\circ}$ of the drop velocity direction. This typical uncertainty is in good agreement with a previous study. It is also shown that the drop sizes measured by the optical probe are in accord with those evaluated by image processing techniques. Finally, the experiments with the optical probe are performed in dense sprays, as it were, in the near field of gas-centered swirl coaxial injectors. Some experimental results are presented and discussed to be of help to understanding of spray characteristics of the injectors.

  • PDF

가변추력을 위한 기체주입식 와류형 분사기의 분무특성 (Spray Characteristics of Effervescent Swirl Injectors for Variable Thrust)

  • 이원구;황동현;안규복;윤영빈
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.1-12
    • /
    • 2019
  • 액체로켓엔진에서의 추력조절을 위해 기체주입식 가변추력 방법에 대한 기초적인 연구를 수행하였다. 기체주입식 가변추력은 간단한 구조로 추력을 조절할 수 있을 뿐만 아니라 밀도 감소에 비례하여 증가된 분사차압에 의해 미립화 성능 증가라는 장점을 갖는다. 본 연구에서는 기체주입식 와류형 분사기를 이용하여 액체 질량유량과 기체주입량의 변화에 따른 분무 불안정, 분무형상, 분무각, 분열 길이와 같은 분무특성을 살펴보았다.

고압축비 전기점화 천연가스 발전용 엔진에서 앳킨슨 사이클 적용을 통한 열효율 향상 (Improvement of Thermal Efficiency using Atkinson Cycle in a High-Compression Ratio, Spark-Ignition, Natural Gas Engine for Power Generation)

  • 이준순;박현욱;오승묵;김창업;이용규;강건용
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.55-61
    • /
    • 2023
  • Natural gas is a high-octane fuel that is effective in controlling knocking combustion. In addition, as a low-carbon fuel with a high hydrogen-carbon ratio, it emits less carbon dioxide and almost no particulate matter compared to conventional fossil fuels. Stoichiometric combustion engines equipped with a three-way catalyst are useful in various fields such as transportation and power generation because of their excellent exhaust emission reduction performance. However, stoichiometric combustion engines have a disadvantage of lower thermal efficiency compared to lean combustion engines. In this study, a combination of high compression ratio and Atkinson cycle was implemented in a 11 liter, 6-cylinder, spark-ignition engine to improve the thermal efficiency of the stoichiometric engine. As a result, pumping and friction losses were reduced and the operating range was extended with optimized Atkinson camshaft. Based on the exhaust gas limit temperature of 730℃, the maximum load and thermal efficiency were improved to BMEP 0.66 MPa and BTE 35.7% respectively.

커먼레일 분사시스템에서 바이오에탄올 및 디젤연료 혼합 바이오디젤의 분무 특성 (Spray Characteristics of Biodiesel Fuel by Blending Bioethanol and Diesel Fuel in a Common Rail Injection System)

  • 박수한;서현규;김형준;이창식
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.82-89
    • /
    • 2009
  • In order to investigate the spray characteristics according to diesel and bioethanol blending with biodiesel fuel, macroscopic spray characteristics were analyzed from the comparison of the effect of the injection pressure, ambient pressure and density on the spray tip penetration and spray cone angle. In addition, spray atomization characteristics were studied with local and overall Sauter mean diameter (SMD) and the contour map of SMD distribution at various injection conditions. It was revealed that the spray tip penetration of biodiesel fuels blended with diesel and ethanol was shorter than that of an undiluted biodiesel fuel at low injection pressure. However, the difference of spray tip penetration among three test fuels reduces at a high injection pressure. Increase of the ambient gas density leads to the decrease of the spray tip penetration of three test fuels. When diesel and ethanol fuels add to an undiluted biodiesel fuel, spray cone angle increases due to the decrease of the fuel density at the same ambient pressure condition. On the other hand, the droplet mean diameter decreases due to the reduction of the kinematic viscosity and surface tension.

자동차용 LPG 연료펌프의 윤활성 개선에 관한 연구 (A Study on the Improvement of Lubrication Characteristics for Fuel Pump in LPG Engine)

  • 김창업;최교남;강건용;박철웅
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2011
  • In recent years, the need for more fuel-efficient and lower-emission vehicles has driven the technical development of alternative fuels such as LPG (Liquefied Petroleum Gas) which is able to meet the limits of better emission levels without many modifications to current engine design. LPG has a high vapor pressure and lower viscosity and surface tension than diesel and gasoline fuels. These different fuel characteristics make it difficult to directly apply the conventional gasoline or diesel fuel pump. Self acting lubricated groove design or coating can be used in high-speed and high precision spindle system like a roller-vane type fuel pump, because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy and simplicity in manufacturing. Those design method can also affect the atomization of fuel from the injector and the formation of fuel film on the intake manifold. In this study, experiments are carried out to get performance characteristics of initial and steady state operation, The characteristics of vane type fuel pump were investigated to access the applicability on LPLi engine.

EXCIPLEX법에 의한 디젤분무의 구조와 분사계 개선에 관한 연구 (A study on the structure of a diesel spray and the Improvement of the Injection System by the Exciplex Method)

  • 김덕줄;차건종
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2373-2385
    • /
    • 1995
  • The goals of this study are to apply exciplex method to the visualization of the fuel spray of a diesel engine and to investigate the liquid phase of fuel spray that injected at the various tips of a fuel injector. This study provides the informations for the improvement of the diesel injection system and the structures of diesel spry with the boiling of fuel droplets in combustion chamber by the exciplex method. Hexame was used as fuel for approximation to injection condition of the engine. And naphthalene and TMDP were added to the fuel for the visualization by exciplex method. Experimental injectors were 4hole, 8hole, and 1hole impinging injectors. In the injection condition of actual engine the exciplex was sufficient to catch the liquid phase signal. The spray penetration of impinging injector was small than that of actual 4 and 8hole injector but atomization was better. The upper bound of impinging injector was determined by the geometry of a cylinder head and the lower bound was determined by spray angle. On impinging injector the atomization was better at the edge of disk than at center of disk and also the mixing with environmental gas was better.

고속충돌노즐을 이용한 분류층 가스화기내의 유동특성에 관한 연구 (Study on flow characteristics in entrained flow gasifier with high speed impinging jet)

  • 이효진;박태준;이재구;김재호;안달홍
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1735-1742
    • /
    • 1996
  • An entrained flow gasifier simulating the cold mode was tested to estimate its performance for coal gasification and flow characteristics with a developed high speed impinging jet nozzle. The burner was designed for high temperature and high pressure(HTHP) conditions, especially for IGCC(Integrated Coal Gasification Combined Cycle). In order to get proper size of droplets for high viscous liquid such as coal slurry, atomization was achieved by impacting slurry with high speed (over 150m/sec) secondary gas (oxygen/or air)/ Formed water droplets were ranged between 100.mu.m to 20.mu.m in their sizes. The flow characteristics in the gasifier was well understood in mixing between fuel and oxidizer. Both external and internal recirculation zones were closely investigated through experimentation with visualization and numerical solutions from FLUENT CODE.

Effervescent atomizer의 내부 유동에 따른 분무특성 (Spray characteristics of effervescent atomizer with internal flows)

  • 구건우;홍정구;김준희;이충원;박창대;임병주;정경열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.123-124
    • /
    • 2012
  • Effervescent atomizer in which the liquid is ejected from nozzle with bubble caused by gas injection into the liquid is one of twin-fluid atomizers. Effervescent atomizer is operated with the lower injection pressure and the smaller air flow rate when compared with those of other twin-fluid atomizers. In this study, we attempted experiment study to investigate the atomization characteristics of effervescent atomizer related with the internal flow condition. The nozzle was made with acrylic material to investigate the nozzle internal flow. The macroscopic spray analysis was conducted with internal flow images and spray images. Furthermore, SMD was measured by using the laser diffraction method. According to this study, the internal flow condition changed from bubbly flow to annular flow as the air-liquid mass ratio(ALR) increases. At that time, the atomization characteristics were improved.

  • PDF

이중공기공급 속도비에 따른 이류체 선회분무 특성 연구 (A Study of Two-Phase Swirl Spray Characteristics on Dual Airblast Velocity Ratio)

  • 강신재;오제하;송기정;노병준
    • 한국분무공학회지
    • /
    • 제5권3호
    • /
    • pp.27-36
    • /
    • 2000
  • In this study, spray characteristics of a dual airblast atomizer are addressed. Three dimensional characteristics of a dual airblast atomizer with air swirl are measured to provide the significant data. The liquid flow rate was fixed at 0.06 kg/min, and atomizing air was controlled at the liquid-air mass ratio of 4.0. The performance of the spray with co-swirl and counter-swirl flow was investigated at each point in the developed spray region using a three-component phase Doppler particle analyzer. This instrument was also used to evaluate the concentration profiles. The three dimensional mean velocity were investigated of present flow characteristics of the dual airblast atomizer. In addition, drop size distributions, mean droplet size profile, and droplet concentration were analyzed to understand atomization characteristics. This experimental results can be conveniently utilized for the preliminary design of gas turbine engines for aircraft.

  • PDF

Y-jet 노즐의 설계인자와 SMD 측정방향에 따른 분무특성의 실험 연구 (Experiment Study on the Spray Characteristics according to the Design Factors and SMD Measuring Direction of Y-jet Nozzle)

  • 이상지;홍정구
    • 한국분무공학회지
    • /
    • 제23권4호
    • /
    • pp.205-211
    • /
    • 2018
  • Y-jet nozzle has various advantages over other twin-fluid nozzles and are used in industrial boilers. However, it costs large energy consumption because of assisted air and its design is complex. The Y-jet nozzle is consisted of a liquid and gas port and a mixing chamber. The diameter of the port and the length of the mixing chamber greatly affect spray and atomization characteristics, therefore, they are the most important factors in nozzle design. In this study, The experimental setup is consisted of a laboratory scale spray system. The characteristics of the Y-jet nozzle according to the design parameters were observed. As a result, it was found that the length of the mixing chamber did not have effect on the flow rate and the choking condition. The droplet size was measured using a Malvern type measuring device. In addition, measurements were conducted in the front and the right directions of the nozzles. Based on the results, the SMD View Ratio is defined. It is the asymmetrical design characteristics of the Y-jet nozzle.