• 제목/요약/키워드: Gas/Metal Interface Diffusion

검색결과 5건 처리시간 0.019초

Ti-6Al-4V합금의 고상 확산접합에 관한 연구 (A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

티타늄 합금의 표면 처리에 있어 표면 거칠기에 대한 레이저 유도 플라즈마 분광분석법 측정 적용 연구 (Laser-Induced Plasma Spectroscopy Measurement on Surface Roughness in Surface Treatment of Titanium Alloys)

  • 김지훈;김주한
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.9-17
    • /
    • 2020
  • In this study, the surface changes of titanium alloy using laser surface treatment and the surface analysis using laser-induced plasma spectroscopy were carried out. The laser surface treatment induced changes in surface roughness and the diffusion of atmospheric elements. Excessive melting or less melting caused roughness changes, but when moderate levels of energy were applied, a smoother surface could be obtained than the initial surface. In the process, the diffusion of atmospheric elements took place. To analyze the diffusion of atmospheric elements with respect to surface morphology, the surfaces were re-shaped with grinding. In this experimental conditions, the effect of plasma formation by surface roughness was identified. Compensated plasma signals for the material properties were obtained and analysed by removing the background plasma signal.

W-C-N 확산방지막의 격자상수 변화 분석을 통한 특성 연구 (Analysis of Lattice constants change for study of W-C-N Diffusion)

  • 김수인;이창우
    • 한국진공학회지
    • /
    • 제17권2호
    • /
    • pp.109-112
    • /
    • 2008
  • 고집적화된 반도체 소자 기술은 나날이 발전하고 있다. 특히 금속 배선을 위한 박막제조 공정에서 배선 선폭은 감소하고 있으며, 그 길이는 더욱 증가하게 되었다. 이러한 상황에서 금속 배선 물질에 대한 연구가 진행 되었고 그 결과 Cu가 그 대안으로 인식되었다. 하지만 Cu는 저온에서도 Si기판과 반응하므로 인하여 접촉면의 저항이 급격히 증가하여 소자로써의 기능이 불가능하게 되는 단점이 있다. 따라서 이러한 Cu와 Si기판 사이의 반응을 효과적으로 방지할 확산방지막의 개발이 필수 요건이 되었다. 본 연구는 Cu의 확산을 방지하는 W-C-N 확산방지막에 대한 연구로 질소비율과 열처리 온도를 변화하여 실험하였으며, 특히 격자상수 변화를 통하여 W-C-N 확산방지의 특성에 대하여 연구하였다.

철의 고온 황화부식에 미치는 탄소의 영향 (The Effect of Carbon on the Hot Corrosion of lron by Sulfur Containing Environment.)

  • 최성필;강성군;백영남
    • 한국표면공학회지
    • /
    • 제21권2호
    • /
    • pp.53-67
    • /
    • 1988
  • The high temperature corrosion of Fe-C alloys were studied at I atm SO gas in the temperature range 500~80$0^{\circ}C$ by means of a thermogravimetric analysis. The Na2SO4 induced high tempwrature corrosion rate was also measured at atm O2 gas under above the temperature renge. The reaction products were identified with the aid of X-ray diffraction technique, and micostruction of the alloy/scale interface was observed with a optical microscope and SEM. The experimental results were disussed by the themodeynamic calcutions. Under above the experimental condition. the reaction rates decrbon with increasing carbon content. The transfer of Fe ion was limited by a residue of carbon precipitated at alloy scale interface due to the oxidation of Fe-C alloys at alloy surface. The effect of cold working on reaction rate was different between the Fe containing low carbon and Fe-C Alloy containing carbon above 0,73 wt%. In a cold worked iron containing low carbon content, the crystallization of metal surface leads to the poor adherence between the alloy and the cavity formed between the alloy and scale. The outward diffusion of ion through the scale is estimated to be hindered by the cavity formed between the scale, consequently decreasing reaction rate. In the case Fe-C containing carbon above 0.73 Wt% alloy, the reaction rate was little affected by cold working, because the effect of content on reaction rats is greater than the effect of cold working.

  • PDF

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.