• Title/Summary/Keyword: Gapless

Search Result 22, Processing Time 0.027 seconds

A Study of Electrical Characteristics for ZnO Varistor in HST (전철용 ZnO 바리스타(IEC 10kA)의 전기적 특성 연구)

  • Hwang, M.K.;Youn, B.H.;Huh, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1519-1521
    • /
    • 1998
  • A Gapless HST(high speed train) arrester design is not possible without the highly non-linear ZnO(ZincOxide) varistors. Zno varistors combine excellent protective characteristics with steady state performance to maximize protection, the ZnO varistors are selected for each unit based on leakage current and residual voltage, to verify that the residual voltage is the residual voltage published for HST arrester.

  • PDF

Evaluation and Performance Test of Arresters for Electric Power Distribution (전력용 피뢰기의 성능확인시험과 평가 분석)

  • Kim, S.S.;Kim, K.U.;Cho, H.G.;Park, T.G.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2329-2331
    • /
    • 1999
  • Metal oxide surge arrester were developed in the late 1970s, and were immediately adopted as significant breakthrough in over voltage protection of power system. Work was continued throughout the world on the design, development and application of metal oxide surge arrester. This paper describes the evaluating test and results of practical use for analyzing the performance of gapless metal oxide surge arresters under various type test.

  • PDF

Physical Property Change of the Gapless Semiconductor $PbPdO_2$ Thin Film by Ex-situ Annealing

  • Choo, S.M.;Park, S.M.;Lee, K.J.;Jo, Y.H.;Park, G.S.;Jung, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.371-372
    • /
    • 2012
  • We have studied lead-based gapless semiconductors, $PbPdO_2$, which is very sensitive to external parameters such as temperature, pressure, electric field, etc[1]. We have fabricated pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films using the pulsed laser deposition. Because of the volatile element of Pb, it is very difficult to grow the films. Note that in case of $MgB_2$, Mg is also volatile element. So in order to enhance the quality of $MgB_2$, some experiments are carried out in annealing with Mg-rich atmosphere [2]. This annealing process with volatile element plays an important role in making smooth surface. Thus, we applied such process to our studies of $PbPdO_2$ thin films. As a result, we found the optimal condition of ex-situ annealing temperature ${\sim}650^{\circ}C$ and time ~12 hrs. The ex-situ annealing brought the extreme change of surface morphology of thin films. After ex-situ annealing with PbO-rich atmosphere, the grain size of thin film was almost 100 times enlarged for all the thin films and also the PbO impurity phase was smeared out. And from X-ray diffraction measurements, we determined highly crystallized phases after annealing. So, we measured electrical and magnetic properties. Because of reduced grain boundary, the resistivity of ex-situ annealed samples changed smaller than no ex-situ sample. And the carrier densities of thin films were decreased with ex-situ annealing time. In this case, oxygen vacancies were removed by ex-situ annealing. Furthermore, we will discuss the transport and magnetic properties in pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films in detail.

  • PDF

Effect of sintering process on the electrical protection performance in a ZnO-based ceramic varistor (ZnO varistor의 소결온도와 첨가물혼합비가 전기적 보호특성에 미치는 영향)

  • 오명환;이경재
    • 전기의세계
    • /
    • v.31 no.6
    • /
    • pp.445-449
    • /
    • 1982
  • This Paper describes the influence of additive concentrations and sintering temperature on the surge protection performance in ZnO ceramic varistors. It is found from the experiments that the metal-oxide semiconductors based oi ZnO with an additive incorporation of 0.50% molx(Bi$\_$2/O$\_$3/+MnO+CoO+Cr$\_$2/O$\_$3/+2Sb$\_$2/O$\_$3/) and sintered at 1250.deg. C present excellent V-I characteristics in view of transient surge suppression. Gapless arrester element with aluminum electrodes shows also good reliability against impulse shock and marks a low voltage clamping ratio(V$\_$1KA/V$\_$1mA/<2.0) compared with the conventional SiC varistors.

  • PDF

Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates

  • Song, U-Seok;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Song, In-Gyeong;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.612-612
    • /
    • 2013
  • The band-gap opening in graphene is a key factor in developing graphene-based field effect transistors. Although graphene is a gapless semimetal, a band-gap opens when graphene is formed into a graphene nanoribbon (GNR). Moreover, the band-gap energy can be manipulated by the width of the GNR. In this study, we propose a site-specific synthesis of a width-tailored GNR directly onto an insulating substrate. Predeposition of a diamond-like carbon nanotemplate onto a SiO2/Si wafer via focused ion beam-assisted chemical vapor deposition is first utilized for growth of the GNR. These results may present a feasible route for growing a width-tailored GNR onto a specific region of an insulating substrate.

  • PDF

Performance Evaluation and Analysis of ZnO Element for Distribution Line Arresters (피뢰기의 ZnO 소자 성능평가 분석)

  • Kim, S.S.;Kim, K.U.;Park, Y.C.;Cho, H.G.;Park, T.G.;Song, I.G.;Kim, J.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.78-81
    • /
    • 2000
  • Metal oxide surge arrester were developed in the late 1970s, and were immediately adopted as significant breakthrough in over voltage protection of power system. Work was continued throughout the world on the design, development and application of metal oxide surge arrester. This paper describes the evaluating test and results of practical use for analyzing the performance of gapless metal oxide surge arresters under various type test. In the result, ZnO element exhibited badness rate of 6.95 percent.

  • PDF

Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates

  • Song, U-Seok;Kim, Yu-Seok;Jeong, Min-Uk;Park, Jong-Yun;An, Gi-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.145.2-145.2
    • /
    • 2013
  • The band-gap opening in graphene is a key factor in developing graphene-based field effect transistors. Although graphene is a gapless semimetal, a band-gap opens when graphene is formed into a graphene nanoribbon (GNR). Moreover, the band-gap energy can be manipulated by the width of the GNR. In this study, we propose a site-specific synthesis of a width-tailored GNR directly onto an insulating substrate. Predeposition of a diamond-like carbon nanotemplate onto a SiO2/Si wafer via focused ion beam-assisted chemical vapor deposition is first utilized for growth of the GNR. These results may present a feasible route for growing a width-tailored GNR onto a specific region of an insulating substrate.

  • PDF

Two-dimensional modelling of uniformly doped silicene with aluminium and its electronic properties

  • Chuan, M.W.;Wong, K.L.;Hamzah, A.;Rusli, S.;Alias, N.E.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.105-112
    • /
    • 2020
  • Silicene is a two-dimensional (2D) derivative of silicon (Si) arranged in honeycomb lattice. It is predicted to be compatible with the present fabrication technology. However, its gapless properties (neglecting the spin-orbiting effect) hinders its application as digital switching devices. Thus, a suitable band gap engineering technique is required. In the present work, the band structure and density of states of uniformly doped silicene are obtained using the nearest neighbour tight-binding (NNTB) model. The results show that uniform substitutional doping using aluminium (Al) has successfully induced band gap in silicene. The band structures of the presented model are in good agreement with published results in terms of the valence band and conduction band. The band gap values extracted from the presented models are 0.39 eV and 0.78 eV for uniformly doped silicene with Al at the doping concentration of 12.5% and 25% respectively. The results show that the engineered band gap values are within the range for electronic switching applications. The conclusions of this study envisage that the uniformly doped silicene with Al can be further explored and applied in the future nanoelectronic devices.

EXTENSION OF OPERATIONAL LIFE-TIME OF WWER-440/213 TYPE UNITS AT PAKS NUCLEAR POWER PLANT

  • Katona, Tamas Janos;Ratkai, Sandor
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.269-276
    • /
    • 2008
  • Operational license of WWER-440/213 units at Paks NPP, Hungary is limited to the design lifetime of 30 years. Prolongation by additional 20 years of the operational lifetime is feasible. Moreover, enhancement of the reactor thermal power by 8% will increase both the net power output and the competitiveness of the plant. Paks NPP is a pioneer considering the power up-rate and preparation of long-term operation of WWER-440/213 design. Systematic preparatory work for long-term operation of Paks NPP has been started in 2000. A regulatory framework and a comprehensive engineering practice have been developed. According to the authors view, creation of a gapless engineering system via consequent application of best practices, and feed-back of experiences together with proper consideration of WWER-440/V213 features are the decisive elements of ensuring the safety of long-term operation. That systematic engineering approach is in the focus of recent paper. Key elements of justification and measures for ensuring the safety of long-term operation of Paks NPP WWER-440/213 units are identified and discussed. These are the assessment of plant condition and review of adequacy of ageing management programmes, also the review, validation and reconstitution of time limited ageing analyses as core tasks of licence renewal.

Research Trend of Topological Insulator Materials and Devices (위상절연체 소재 및 소자 기술 개발 동향)

  • W.J. Lee;T.H. Hwang;D.H. Cho;Y.D. Chung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Topological insulators (TIs) emerge as one of the most fascinating and amazing material in physics and electronics. TIs intrinsically possess both gapless conducting surface and insulating internal properties, instead of being only one property such as conducting, semiconducting, and insulating. The conducting surface state of TIs is the consequence of band inversion induced by strong spin-orbit coupling. Combined with broken inversion symmetry, the surface electronic band structure consists of spin helical Dirac cone, which allows spin of carriers governed by the direction of its momentum, and prohibits backscattering of the carriers. It is called by topological surface states (TSS). In this paper, we investigated the TIs materials and their unique properties and denoted the fabrication method of TIs such as deposition and exfoliation techniques. Since it is hard to observe the TSS, we introduced several specialized analysis tools such as angle-resolved photoemission spectroscopy, spin-momentum locking, and weak antilocalization. Finally, we reviewed the various fields to utilize the unique properties of TIs and summarized research trends of their applications.