• Title/Summary/Keyword: Gap sensor

Search Result 403, Processing Time 0.025 seconds

An Experimental Study on Calibration Method of Heat Flux Sensor by using Helium Gas (헬륨을 이용한 열유속센서 검정방법의 실험적 연구)

  • Yang, Hoon-Cheul;Song, Chul-Hwa;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1219-1224
    • /
    • 2004
  • The objective of this study is to propose an experimental calibration facility in which a heat flux sensor can be calibrated under conductive condition by using helium gas. The heat flux calibration facility was designed, simulated and manufactured for use in a high heat transfer condition. It delivers heat fluxes up to a maximum of 35 KW $m^{-2}$. A copper block heated electrically with 3.5 KW power is designed to produce uniform temperature up to 600 K across its face. High heat fluxes are provided between hot plate and cold plate by 1 mm height helium filled gap. A cold plate is maintained around 300 K through pool boiling using a refrigerant and water-cooled heat exchanger. A simulation was conducted to verify the design of the main test section. To verify the performance of calibration facility, a heat flux sensor was examined. The measured heat fluxes were compared to the calculated one.

  • PDF

Optimal Cylindrical Capacitive Sensor(CCS) taking into account the Circumferential Gaps between Sensor Electrodes (센서 전극 사이의 간극을 고려한 최적의 정전용량 센서)

  • Ahn, Hyeong-Joon;Park, Jong-Min;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.613-618
    • /
    • 2004
  • CCS was developed and applied to rotating machines because of accurately measuring the spindle error motion without significant efforts. However, researches on the CCS have been focused on ideal cases where circumferential gaps were ignored. This paper presents the effects of circumferential gaps and proposes an optimal CCS considering the circumferential gaps. First, electrostatic analysis of the CCS that includes the circumferential gaps is performed using the FEM, and an additional capacitance due to the circumferential gap can be approximated as an equivalent extended sensor length. Second, a mathematical model of the CCS considering the circumferential gaps is derived, and the optimal CCS is determined through minimization of the weighted error amplification factor. Finally, two CCSs, both considering and ignoring the circumferential gaps, are built, and the effectiveness of the optimal design is verified through simulation and experiment.

  • PDF

Automatic Registration of Two Parts using Robot with Multiple 3D Sensor Systems

  • Ha, Jong-Eun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1830-1835
    • /
    • 2015
  • In this paper, we propose an algorithm for the automatic registration of two rigid parts using multiple 3D sensor systems on a robot. Four sets of structured laser stripe system consisted of a camera and a visible laser stripe is used for the acquisition of 3D information. Detailed procedures including extrinsic calibration among four 3D sensor systems and hand/eye calibration of 3D sensing system on robot arm are presented. We find a best pose using search-based pose estimation algorithm where cost function is proposed by reflecting geometric constraints between sensor systems and target objects. A pose with minimum gap and height difference is found by greedy search. Experimental result using demo system shows the robustness and feasibility of the proposed algorithm.

Precise in situ Measurement using Non-Contacting Capacitive Sensor with 4-Electrodes (비접촉식 4-전극형 전기용량 센서를 이용한 in situ 정밀측정)

  • 이래덕
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.93-98
    • /
    • 1999
  • Non-contacting capacitive sensors, based on principle of the cross capacitor, for measuring small displacement less than 1.95$\pm$0.5 mm have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors, the new sensor is consisted of 4-electrodes which are formed 2 active electrodes and 2 guard electrodes on a sapphire plate with diameter 17mm and thickness 0.7 mm, and are symmetrically situated with constant gap of 0.2 mm among the electrodes. The sensor is evaluated to be correlation coefficient of 0.9987 for the range of 1.95$\pm$0.5 mm and that of 0.9995 for 1.95$\pm$0.25 mm range. This sensor can be used for in situ measurements in the mechanical mirror polishing with precision less than $\pm$1${\mu}{\textrm}{m}$.

  • PDF

Development of a Turning Radius Measurement System using DGPS for Agricultural Tractors (DGPS를 이용한 농용트랙터 선회반경 측정 시스템 개발)

  • Kim, Yu-Yong;Lim, Jong-Guk;Shin, Seoung-Yeop;Kim, Hyeok-Ju;Kim, Byoung-Gap;Kim, Hyeong-Kwon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • This study was carried out to develop turning radius measuring method and device of using a DGPS speed sensor for agricultural tractors. The measurement system consisted of a DGPS speed sensor, a data acquisition device, a touch panel, a photo sensor, a radio modem and a notebook computer. Three methods were developed: average of turning speed-time method, integral of turning speed-time method, and speed-heading angular velocity method. Best method was average of turning speed-time method which could be used with a maximum error 2.7 cm.

Fabrication and Performances Tests of the Optical Fiber Position Sensor for Application to Spindle State Monitoring (주축 상태 모니터링 용 광파이버 변위센서 제작 및 성능평가)

  • Shin Woo-cheol;Hong Jun-hee;Park Chan-gyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.37-44
    • /
    • 2005
  • This paper presents fabrication techniques of the optical fiber position sensor (or spindle state monitoring. These include selection of components such as optical fibers, a laser-diode, a photo-diode, and op-amp IC of the signal process circuit. We also describe electric runout problem. The fabricated sensor has a linearity of $1.7\%$ FSO in the air gap range $0.1\~0.6mm$, a resolution of $0.37{\mu}m$ and a bandwidth of 6.3kHz. Finally, we have successfully operated a magnetic bearing spindle system using the sensors.

A Study on a process for signal to detect the continuous position of liquid (연속 수위 검출 신호 처리에 대한 연구)

  • Bae, Sang-June;Chae, Su-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.178-183
    • /
    • 2002
  • In this paper, the capacitive sensor which can detect the continuous position of liquid is proposed. The proposed sensor make up copper rod's defect which are oxidized in liquid and float switch's defect which are tired of continuous movements. This sensor make use of what capacitance is varying due to quantity and kind of dielectric in the plane gap. The operating principle of the sensor and the amplifying methode of detecting signal and the methode of apply in computer control system are presented in this paper.

  • PDF

원통형 커패시턴스 센서를 이용한 초정밀 공기 주축의 회전오차 측정

  • 김해일;박상신;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.637-642
    • /
    • 1995
  • For measuring the error motion of ultra-precision spindle, eliminating the geometric errors is a must. Unless it is achieved, geometric errors will be dominant in data. Here, the roundness error and alignment error between spindle and sensor are to be removed. That's because typical error range of such spindle is muchless than geometric one. A capacitive transducer of cylidricalshape was developed, which takes full advantage of the spatial-averaging effect by using large area compared tpo the geometric error. This idea was first proposed by Chapman and here it is modified for better performance with nomical gap of 50 .mu. m and with newly designed guards which encompass the respective sensor to rectify the electrical field distribution in good shape. The measurement system is made to get the orbit of Ultra-Precision Air Spindle which is supposed to have its runout under 1 .mu. m. The Calibration data of this sensor is presented and the spindle orbit from 2000rpm to 5500rpm is showed. It is quite reasonable to use this sensor in the range of 60 .mu. m with an accuracy of several tens of nm.

A Study On The Optimum Node Deployment In The Wireless Sensor Network System (무선 센서 네트워크의 최적화 노드배치에 관한 연구)

  • Choi, Weon-Gap;Park, Hyung-Moo
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.100-107
    • /
    • 2007
  • One of the fundamental problems in wireless sensor networks is the efficient deployment of sensor nodes. The Fuzzy C-Means(FCM) clustering algorithm is proposed to determine the optimum location and minimum number of sensor nodes for the specific application space. We performed a simulation and a experiment using two rectangular and one L shape area. We found the minimum number of sensor nodes for the complete coverage of modeled area, and discovered the optimum location of each nodes. The real deploy experiment using sensor nodes shows the 94.6%, 92.2% and 95.7% error free communication rate respectively.

  • PDF

Real-time Blood Pressure Monitoring in Porcine Tibial Artery Using LC Resonant Pressure Sensor (LC 공진형 압력 센서를 이용한 돼지 경골 동맥의 실시간 혈압 측정)

  • Choi, Won-Seok;Kim, Jin-Tae;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.445-450
    • /
    • 2012
  • We have developed an implantable wireless sensor for real time pressure monitoring of blood circulation system. MEMS (micro-electro-mechanical system) technology was adopted as a sensor development method. The sensor is composed of photolithographically patterned inductors and a distributed capacitor in gap between the inductors. A resulting LC resonant system produces its resonant frequency in range of 269 to 284 MHz at 740 mmHg. To read the resonant frequency changed by blood pressure variation, we developed a custom readout system based on a network analyzer functionality. The bench-top testing of the pressure sensors showed good mechanical and electrical functionality. A sensor was implanted into tibial artery of farm pig, and interrogated wirelessly with accurate readings of blood pressure. After 45 days, the sensor's electrical response and histopathology were studied with good frequency reading and biocompatibility.