• Title/Summary/Keyword: Gap Spacing(S)

Search Result 30, Processing Time 0.028 seconds

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

A Study on the Measurements of Discharge Parameters in Case of the Switching Impulse Breakdown of a Large Air Spacing (이격거리가 큰 전국의 공기절연파괴 현상시 발생하는 인자측정에 관한 연구)

  • 최영욱;조연옥
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.12
    • /
    • pp.1290-1295
    • /
    • 1991
  • The paper presents the measurement results on the parameters affecting the breakdown mechanism of a large air spacing under switching impulse voltages. Measured parameters are the velocities of leader channels, predischarge currents, electric charges injected into the rod-plane air gap and electric field intensities on the plane. For the 3m air gap under switching impulse voltages, the velocities of leader channel have been measured to be of 1cm/x10S0-6Ts - 5cm/x10S0-6Ts, electric field intensity of 2kv/cm, predischarge current of 1.2-1.6A, the charges injected into the air gap of 11-40x10S0-6TC for 400-887kV impulse voltages.

  • PDF

A Study on the Measurements of Parameters Affecting the Breakdown Mechanism of a Large Air Spacing (이격거리가 큰 전극의 공기 절연파괴에 영향을 미치는 인자측정에 관한연구)

  • Cho, Yun-Ok;Choi, Young-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.756-760
    • /
    • 1988
  • The paper presents the measurement results on the parameters affecting the breakdown mechanism of a large air spacing under switching impulse voltages. Measured parameters are the velocities of leader channels, predischarge currents, electric charges injected into the rod-plane air gap and electric field intensities on the plane. For the 3m air gap under switching impulse voltages, the velocities of leader channel have been measured to be of 1cm/${\mu}s$ - 5cm/${\mu}s$, electric field intensity of 2kv/cm, predischarge current of 1.2A - 1.6A, the charges injected into the air gap of 11 - 40 ${\mu}$C for 400-887kV impulse voltages.

  • PDF

Effects of Corona Electrode Shape and Discharge Gap Spacing on Ozone Concentration (방전공격과 방전극 형상이 오존발생농도에 미치는 영향)

  • Park, Seung-Lok;Lee, Jae-Chan;Jung, Sung-Jin;Moon, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.169-175
    • /
    • 2001
  • Ozone has been widely applied to many industrial fields because of its strong oxidation power, Therefore, the studies have been carried out for the methods on an effective and high concentration ozone generation. The silent or surface discharge type ozone generators have been mainly used for high concentration ozone generation in many fields of applications. But these two types of ozone generators have shortcomings to be improved. In this study, the ozone generator which improved the shortcomings of above ozone generators was proposed and fabricated for the high concentration ozone generation. And the proposed ozone generator could generate the surface and barrier discharge simultaneously. For this purpose, a mesh type discharge electrode was proposed and studied as a function of the widths output maximum ozone concentration of 2.96[vol%] was obtained at 5.6[kV], 830[mA], for 0.3[mm] width and 0.8[mm] vacancy of the mesh electrode and gap spacing of 0.65[mm] respectively.

  • PDF

Performance Analysis of A Variable-Spacing Cesium Thermionic Energy Converter (열전변환 장치의 특성 분석에 대한 연구)

  • Lee, Deuk-Yong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1085-1094
    • /
    • 1992
  • A variable-spacing cesium thermionic energy conversion test station is designed and fabricated for the study of power generation. The diode is in the form of a guard-ringed plane-parallel geometry in which a polycrystalline rhenium emitter of 2 cmS02T area faces a radiation-cooled polycrystalline rhenium collector of 1.9 cmS02T area. The emission of plasma from heated refractory electrode metal is the driving reaction in the direct conversion of heat to electricity by thermionic energy conversion. The plasma is produced from electrons and positive ions formed simultaneously by thermionic emission and surface ionization of cesium atoms incident on the hot emitter from the cesium vapor in the diode. And high plasma density causes plasma multiplication within the gap due to volume ionization that results in high power output. The variation of the saturation current of a Knudsen converter is investigated at an emitter-collector gap of 0.1 mm and an emitter temperatures. A maximum power output of 13.47 watta/cmS02T is observed at a collector temperature of 963 K and a cesium reservoir temperature of 603 K.

The effect of upstream low-drag vortex generators on juncture flows

  • Younis, Md.Y.;Zhang, Hua;Hu, Bo;Uddin, Emad;Aslam, Jawad
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.355-367
    • /
    • 2019
  • Control of horseshoe vortex in the circular cylinder-plate juncture using vortex generator (VG) was studied at $Re_D$(where D is the diameter of the cylinder) = $2.05{\times}10^5$. Impact of a number of parameters e.g., the shape of the VG's, number of VG pairs (n), spacing between the VG and the cylinder leading edge (L), lateral gap between the trailing edges of a VG pair (g), streamwise gap between two VG pairs ($S_{VG}$) and the spacing between the two VG's in parallel arrangement ($Z_{VG}$) etc. were investigated on the horseshoe vortex control. The study is conducted using surface oil flow visualization and surface pressure measurements in low speed wind tunnel. It is observed that all the parameters studied have significant control effect, either by reduction in separation region or by lowering the adverse pressure along the symmetric axis upstream of the juncture.

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.

A Basic Study on a New Type Particulate Emission Control Means of a Power Station Using a Micro-Gap and a Pulse Discharge (Micro-Airgap Discharge Phenomena) (초미소간격(超微小間隔)과 극단(極端)펄스방전(放電)을 이용(利用)한 미연소탄소립자(未燃燒炭素粒子) 소각제거기술(燒却除去技術) 개발기초연구(開發基礎硏究)(I) (초미소간격(超微小間隔)의 방전현상(放電現象)))

  • Moon, Jae-Duk;Shin, Soo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.605-608
    • /
    • 1993
  • Breakdown characteristics of a small rod-to-rod microairgap has been studied for obtain an optimum breakdown voltage and an airgap spacing to be used as an emission control means by the electrical arc-burning unburnt carbon particulates exhausted from a power station burner. It is found that the breakdown voltage at the rod-to-rod airgap spacing in the rang of $1{\sim}100{\mu}m$ decreased with decrease in the rod-to-rod airgap spacing. And there were no minimum breakdown voltage on a $V_b$-Pd characteristics which is known as the minimum voltage in Paschen's law in air atmosphere. Breakdown voltages of the airgap at the constant airgap spacing were $V_{b-dc}>V_{b-ac}>V_{b-pulse}$, and it was lowest for the pulse voltage applied. As a result, it is found that a pulse power was one of effective power compared with dc or ac to be used as such an unburnt carbon particulate emission control means and the airgap spacing became to several tens ${\mu}m$, then the breakdown voltages were down to several handreds voltages.

  • PDF

Influences of Mesh Shapes and Interspacings on Ozone Generation Characteristics (그물방전극 형상과 방전공격이 오존생에 미치는 영향)

  • Park, Seung-Lok;Lee, Jae-Chan;Moon, Jae-Duk;Jung, Sung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.29-32
    • /
    • 2000
  • Ozone has been widely applied to many industrial fields because of its strong oxidation effects. Therefore, the studies have been progressed for the effective and high concentration of one generation. The silent or surface discharge have been mainly used for high concentration ozone generation until now. But these two types of ozone generators have shortcomings to be improved. In this study, the ozone generator which improved the shortcomings of above two type of ozone generators was proposed and manufactured for high concentration ozone generation. And the proposed ozone generator could generate the surface and barrier discharge simultaneously. For this purpose, a mesh type discharge electrodes were proposed and the experiments were fulfilled as a function of the widths and spacings of mesh electrodes and gap spacings between the dielectric barrier and mesh electrode. When the width of mesh electrode[WM] and spacing of mesh electrode[SM] are 0.3[mm] and 0.8[mm] respectively, the maximum ozone concentration of 2.96[vol%] was obtained at 5.6[kV], 830[mA], gap spacing (S)=0.65[mm].

  • PDF

Simulation of fluid flow and particle transport around two circular cylinders in tandem at low Reynolds numbers (낮은 레이놀즈 수에서 두 개의 원형 실린더 주위 유동 및 입자 거동 해석)

  • Khalifa, Diaelhag Aisa Hamid;Jeong, S.;Kim, D.
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.81-89
    • /
    • 2021
  • Understanding particle-laden flow around cylindrical bodies is essential for the better design of various applications such as filters. In this study, laminar flows around two tandem cylinders and the motions of particles in the flow are numerically investigated at low Reynolds numbers. We aim to reveal the effects of the spacing between cylinders, Reynolds number and particle Stokes number on the characteristics of particle trajectories. When the cylinders are placed close, the unsteady flow inside the inter-cylinder gap at Re = 100 shows a considerable modification. However, the steady recirculation flow in the wake at Re = 10 and 40 shows an insignificant change. The change in the flow structure leads to the variation of particle dispersion pattern, particularly of small Stokes number particles. However, the dispersion of particles with a large Stokes number is hardly affected by the flow structure. As a result, few particles are observed in the cylinder gap regardless of the cylinder spacing and the Reynolds number. The deposition efficiency of the upstream cylinder shows no difference from that of a single cylinder, increasing as the Stokes number increases. However, the deposition on the downstream cylinder is found only at Re = 100 with large spacing. At this time, the deposition efficiency is generally small compared to that of an upstream cylinder, and the deposition location is also changed with no deposited particles near the stagnation point.