• Title/Summary/Keyword: Gangneung wildfire

Search Result 11, Processing Time 0.02 seconds

Risk Communication Networks in South Korea: The Case of the 2017 Gangneung Wildfire

  • Oh, Jeongmin;Jung, Kyujin;Song, Minsun
    • Journal of Contemporary Eastern Asia
    • /
    • v.20 no.2
    • /
    • pp.85-107
    • /
    • 2021
  • Wildfires have become increasingly common and intense in South Korea because of climate change, but few have recognized the catastrophic level of the problem. Given the significant impact of wildfires, emergency management stakeholders must have effective risk communication structures for rapidly responding to such phenomena and overcoming geographical difficulties. Despite the country spending billions of dollars to build a big databased early warning system, risk communication flow during the 2017 Gangneung wildfire was ineffective, thereby causing substantial economic, social, and environmental losses. To examine the patterns of information exchange in South Korea's risk communication networks and their structural characteristics during the wildfire, we conducted semantic and network analyses of real-time data collected from social media. The results showed that the inefficient flow of risk information prevented emergency responders from adequately assessing the emergency and protecting the population. This study provides new insights into effective risk communication responses to catastrophic events and methods of research on webometric approaches to emergency management.

Application of Landsat ETM Image to Estimate the Distribution of Soil Types and Erosional Pattern in the Wildfire Area of Gangneung, Gangweon Province, Korea (강원도 강릉시 산불지역에서의 토양유형의 분포와 침식양상파악을 위한 Landsat ETM 영상의 활용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Chung, Gong-Soo;Lee, Jin-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.764-773
    • /
    • 2004
  • The soil in wildfire area Sacheon-myeon, Gangneung, Gangweon Province, Korea, were investigated to clarify pattern of the soils. The soils were classified into 5 types on the basis of vegetation, types of organic matter. thickness of soil horizons, and completeness of soil profile. Each type showed different erosion pattern and Landsat ETM image. Coverage of plant leaves, litter, root, ash and other organic matter was an important component that affected soil color and reflectance of Landsat image (digital number). Although the NDVI (Normalized Distribution Vegetation Index) method in the wildfire area did not show much difference in soil types, the applied supervised classification method showed characteristic pattern of Landsat ETM image of soil types. This study showed that the applied supervised Landsat TM image classification in wildfire area is an effective way to estimate the distribution of erosion pattern of soil in wildfire area.

Application of Landsat ETM Image Indices to Classify the Wildfire Area of Gangneung, Gangweon Province, Korea (강원도 강릉시 일대 산불지역 분류를 위한 Landsat ETM 영상 분류지수의 활용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Chung, Gong-Soo;Lee, Jin-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.754-763
    • /
    • 2004
  • This study was aimed to examine the Landsat Enhanced Thematic Mapper Plus (ETM+) index, which matches well with the field survey data in the wildfire area of Gangneung, Gangweon Province, Korea. In the wildfire area NDVI (Normalized Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and Tasseled Cap Transformation Index (Brightness, Wetness, Greenness) were compared with field survey data. NDVI and SAVI were very useful in detecting the difference between the wildfire and non-wildfire area, but not so in classify the soil types in the wildfire area. The soil plane based on the Tasseled Cap Transformation showed a better result in classifying the soil types in the wildfire areas than NDVI and SAVI, and corresponded well with field survey data. Using a linear function based on greenness and wetness in the Tasseled Cap Transformation is expected to provide a more efficient and quicker method to classify wildfire areas.

Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface (WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가)

  • Shin, Seung Sook;Ahn, Seunghyo;Song, Jinuk;Chae, Guk Seok;Park, Sang Deog
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.421-435
    • /
    • 2024
  • In April 2023, a wildfire broke out in Gangneung located in the east coast region due to the influence of the Yanggang-local wind. In this study, GIS-based RUSLE(Revised Universal Soil Loss Equation) and SEMMA (Soil Erosion Model for Mountain Areas) were used to evaluate the erosion rate due to vegetation recovery in a small watershed of the Gangneung WUI(Wildland-Urban Interface) fire. The small watershed of WUI fire has a low altitude range of 10-30 m and the average slope of 10.0±7.4° which corresponds to a gentle slope. The soil texture was loamy sand with a high organic content and the deep soil depth. As herbaceous layer regenerated profusely in the gully after the wildfire, the NDVI (Normalized Difference Vegetation Index) reached a maximum of 0.55. Simulation results of erosion rates showed that RUSLE ranged from 0.07-94.9 t/ha/storm and SEMMA ranged from 0.24-83.6 t/ha/storm. RUSLE overestimated the average erosion rate by 1.19-1.48 times compared to SEMMA. The erosion rates were estimated to be high in the middle slope where burned pine trees were widely distributed and the slope was steep and to be relatively low in the hollow below the gully where herbaceous layer recovers rapidly. SEMMA showed a rapid increase in erosion sensitivity under at certain vegetation covers with NDVI below 0.25 (Ic = 0.35) on post-fire hillslopes. Gentle slopes with high organic content and rapid recovery of natural vegetation had relatively low erosion rate compared to steep slopes. As subsequent infrastructure and human damages due to sediment disaster by heavy rain is anticipated in WUI fire areas, the research results may be used as basic data for targeted management and decision making on the implementation of emergency treatment after the wildfire.

Wildfire Risk Index Using NWP and Satellite Data: Its Development and Application to 2019 Kangwon Wildfires (기상예보모델자료와 위성자료를 이용한 산불위험지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Kim, Yeong-Ho;Kong, In-Hak;Chung, Chu-Yong;Shin, Inchul;Cheong, Seonghoon;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.337-342
    • /
    • 2019
  • This letter describes the development of WRI (Wildfire Risk Index) using GDAPS (Global Data Assimilation and Prediction System) and satellite data, and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. We made sure that the proposed WRI represented the change of wildfire risk of around March 19 and April 4 very well. Our approach can be a viable option for wildfire risk monitoring, and future works will be necessary for the utilization of GK-2A products and the coupling with the wildfire prediction model of the Korea Forest Service.

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

Trend Analysis of Wildland Fires and Their Impacts on Atmospheric Environment over East Asia

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2016
  • Active fire products from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observation during the 16 years from 2000-2015 were analyzed to estimate spatial and temporal variations of wildland fires over East Asia (region of interest: $20^{\circ}N-55^{\circ}N$, $100^{\circ}E-150^{\circ}E$). GLOBCOVER 2009 land cover data were also used to investigate the trend in wildfire occurrence with respect to each land cover type. Statistical analysis showed that the highest number of wildland fires occurred in the evergreen and vegetation covered areas, and strong seasonal variations were found in these areas. Total numbers of fires were 283,683 and 202,543, respectively. In particular, the wildland fires in croplands occurred mainly during summer season and distinguishable increasing trends were found. The correlations between number of wildland fires and air pollutants, such as black carbon, organic matter, and carbon monoxide, were also calculated in order to investigate the intensity of the air pollution caused by the wildland fires. Positive correlation between total column carbon monoxide contents and the occurrence of wildland fire was found. In addition, this correlation was higher than the correlation between fire occurrence and black carbon or organic matter. These results indicate that a significant amount of carbon monoxide originated from the wildland fires and influenced the regional atmospheric environment in East Asia.

Estimation of Forest Productivity for Post-Wild-fire Restoration in East Coastal Areas (동해안 산불피해지 복구를 위한 산림생산력의 추정)

  • Koo, Kyo-Sang;Lee, Myung-Jong;Shin, Man-Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • In order to rehabilitate forest sites damaged by wildfire via natural or artificial restoration, it is important to determine right tree species, which can acclimate to biogeoclimatic environment at the sites. The objectives of this study were to develop site index equation of different tree species for estimating forest productivity and to provide information on species selection for post-wildfire restoration. Site index equation was developed based on environmental information from wildfire damaged areas in Gangneung, Goseong, Donghae, and Samcheok, where were located in east coastal areas of South Korea. Despite the small numbers (4~5) of environmental variables used for the development of the site index equations, statistical analysis (e.g. mean difference, standard deviation of difference, and standard error of difference) showed relatively low bias and variation, suggesting that those equations can provide relatively high capability of estimation and practical applicability with high effectiveness. The small numbers of the variables enabled the model to be applied in a wide range of usages including determination of appropriate tree species for post-wildfire restoration. The estimation of forest site productivity showed the possibility of large distribution in east coastal region as the best site for Korean ash (Fraxinus rhynchophylla) and original oak (Quercus variabilis) that can be used for firebreak in the region. These results imply that damages by forest fire can be reduced significantly by replacing existing pure coniferous forests in the area with ones dominated by broad-leaved deciduous stands, which can play an important role as fire break and/or prevent a transition from surface fire to crown fire.

Estimation of Fire Emissions Using Fire Radiative Power (FRP) Retrieved from Himawari-8 Satellite (히마와리 위성의 산불방사열에너지 자료를 이용한 산불배출가스 추정: 2017년 삼척 및 강릉 산불을 사례로)

  • Kim, Deasun;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1029-1040
    • /
    • 2017
  • Wildfires release a large amount of greenhouse gases (GHGs) into the atmosphere. Fire radiative power (FRP) data obtained from geostationary satellites can play an important role for tracing the GHGs. This paper describes an estimation of the Himawari-8 FRP and fire emissions for Samcheock and Gangnueng wildfire in 6 May 2017. The FRP estimated using Himawari-8 well represented the temporal variability of the fire intensity, which cannot be captured by MODIS (Moderate Resolution Imaging Spectroradiometer) because of its limited temporal resolution. Fire emissions calculated from the Himwari-8 FRP showed a very similar time-series pattern compared with the AirKorea observations, but 1 to 3 hour's time-lag existed because of the distance between the station and the wildfire location. The estimated emissions were also compared with those of a previous study which analyzed fire damages using high-resolution images. They almost coincided with 12% difference for Samcheock and 2% difference for Gangneung, demonstrating a reliability of the estimation of fire emissions using our Himawari-8 FRP without high-resolution images. This study can be a reference for estimating fire emissions using the current and forthcoming geostationary satellites in East Asia and can contribute to improving accuracy of meteorological products such as AOD (aerosol optical depth).

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.