• Title/Summary/Keyword: Ganglioside GT1b

Search Result 6, Processing Time 0.025 seconds

Ganglioside GT1b Mediates Neuronal Differentiation of Mouse Embryonic Stem Cells

  • Lee, So-Dam;Jin, Jung-Woo;Choi, Jin;Choo, Young-Kug
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • It has been reported that ganglioside GT1b is expressed during neuronal cell differentiation from undifferentiated mouse embryonic stem cells (mESCs), which suggests that ganglioside GT1b has a direct effect on neuronal cell differentiation. Therefore, this study was conducted to evaluate the effect of exogenous addition of ganglioside GT1b to an in vitro model of neuronal cell differentiation from undifferentiated mESCs. The results revealed that a significant increase in the expression of ganglioside GT1b occurred during neuronal differentiation of undifferentiated mESCs. Next, we evaluated the effect of retinoic acid (RA) on GT1b-treated undifferentiated mESCs, which was found to lead to increased neuronal differentiation. Taken together, the results of this study suggest that ganglioside GT1b plays a crucial role in neuronal differentiation of mESCs.

  • PDF

Anti-oxidative effects of exogenous ganglioside GD1a and GT1b on embryonic developmental competence in pigs

  • Kim, Jin-Woo;Park, Hyo-Jin;Yang, Seul-Gi;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.347-356
    • /
    • 2020
  • Gangliosides are glycolipids in which oligosaccharide is combined with sialic acids. Our previous studies have suggested an interplay between ganglioside GD1a/GT1b and meiotic maturation capacity in porcine oocyte maturation. Furthermore, ganglioside GD1a and GT1b are known for its antioxidant activity, but it is still unclear whether possible antioxidant role of GD1a and GT1b is involved in porcine embryos development competence during in vitro culture (IVC). Here, the effects of ganglioside GD1a and GT1b on the embryonic developmental competence during in vitro culture of porcine were investigated. The effects of ganglioside GD1a and GT1b on the expression of ST3GAL2 were confirmed during embryos development (2-cell, 4-cell, 8-cell and blastocyst) using immunofluorescent staining (IF). As a result, the fluorescent expression of ST3GAl2 was higher in embryos at 4-8 cells stage than blastocysts. Blastocyst development rate significantly increased in only 0.1 μM GD1a and GT1b treated groups compared with control group. To investigate the cellular apoptosis, we analyzed TUNEL assay. In case of only 0.1 μM GD1a and GT1b treated groups, the total number of cells in blastocyst compared with control group, but there was no significant difference in the rate of apoptotic cells. We identified the intracellular ROS levels using DCF-DA staining. According to the result, ROS production significantly decreased in blastocysts derived from the 0.1 μM GD1a and GT1b treated groups. These results suggest that ganglioside GD1a and GT1b improve the developmental competence of porcine embryos via reduction of intracellular ROS during preimplantation stage.

Differential Expression of Gangliosides in the Ovary and Uterus of Streptozotocin-Induced and db/db Diabetic Mice

  • Kim, Sung-Min;Kwak, Dong-Hoon;Kim, Sun-Mi;Jung, Ji-Ung;Lee, Dae-Hoon;Lee, Seoul;Jung, Kyu-Yong;Do, Su-Il;Choo, Young-Kug
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.666-676
    • /
    • 2006
  • Gangliosides are widely distributed in mammalian cells and play important roles in various functions such as cell differentiation and growth control. In addition, diabetes and obesity cause abnormal development of reproductive processes in a variety of species. However, the mechanisms underlying these effects, and how they are related, are not fully understood. This study examined whether the differential expression of gangliosides is implicated in the abnormal follicular development and uterine architecture of streptozotocin (STZ)-induced and db/db diabetic mice. Based upon the mobility on high-performance thin-layer chromatography, mouse ovary consisted of at least five different ganglioside components, mainly gangliosides GM3, GM1, GD1a and GT1b, and diabetic ovary exhibited a significant reduction in ganglioside expression with apparent changes in the major gangliosides. A prominent immunofluorescence microscopy showed a dramatic loss of ganglioside GD1a expression in the primary, secondary and Graafian follicles of STZ-induced and db/db diabetic mice. A significant decrease in ganglioside GD3 expression was also observed in the ovary of db/db mice. In the uterus of STZ-induced diabetic mice, expression of gangliosides GD1a and GT1b was obviously reduced, but gangliosides GM1, GM2 and GD3 expression was increased. In contrast, the uterus of db/db mice showed a significant increase in gangliosides GM1, GD1a and GD3 expression. Taken together, a complex pattern of ganglioside expression was seen in the ovary and uterus of normoglycemic ICR and $db/^+$ mice, and the correspoding tissues in diabetic mice are characterized by appreciable changes of the major ganglioside expression. These results suggest that alterations in ganglioside expression caused by diabetes mellitus may be implicated in abnormal ovarian development and uterine structure.

Ganglioside GT1b increases hyaluronic acid synthase 2 via PI3K activation with TLR2 dependence in orbital fibroblasts from thyroid eye disease patients

  • Yoo, Hyun Kyu;Park, Hyunju;Hwang, Hye Suk;Kim, Hee Ja;Choi, Youn-Hee;Kook, Koung Hoon
    • BMB Reports
    • /
    • v.54 no.2
    • /
    • pp.136-141
    • /
    • 2021
  • Thyroid eye disease (TED) is a complex autoimmune disease with a spectrum of signs. we previously reported that trisialoganglioside (GT)1b is significantly overexpressed in the orbital tissue of TED patients, and that exogenous GT1b strongly induced HA synthesis in orbital fibroblasts. However, the signaling pathway in GT1b-induced hyaluronic acid synthase (HAS) expression in orbital fibroblasts from TED patients have rarely been investigated. Here, we demonstrated that GT1b induced phosphorylation of Akt/mTOR in a dose-dependent manner in orbital fibroblasts from TED patients. Both co-treatment with a specific inhibitor for PI3K and siRNA knockdown of TLR2 attenuated GT1b-induced Akt phosphorylation. GT1b significantly induced HAS2 expression at both the transcriptional and translational level, which was suppressed by specific inhibitors of PI3K or Akt/mTOR, and by siRNA knockdown of TLR2. In conclusion, GT1b induced HAS2 in orbital fibroblasts from TED patients via activation of the PI3K-related signaling pathway, dependent on TLR2.

Differential Expression Patterns of Gangliosides in the Liver and Heart of NIH-miniature Pigs (NIH-미니돼지의 간과 심장에서 갱글리오시드의 서로 다른 발현 패턴)

  • Ryu, Jae-Sung;Chang, Kyu-Tae;Kim, Ji-Su;Kwak, Dong-Hoon;Lee, Young-Choon;Oh, Keon-Bong;Choo, Young-Kug
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.467-473
    • /
    • 2010
  • Gangliosides are a major component of the plasma membrane of mammalian cells, which are directly involved in a variety of immunological events, including cell-to cell or cell-to-protein interactions. In this study, we investigated whether gangliosides, sialic acid-containing glycosphingolipids, are related to rejection during the xenotransplantation of NIH-miniature pig livers and hearts to humans. Both high performance thin-layer chromatography and immunohistochemistry analyses revealed that the expression of gangliosides in the liver tissue of NIH-miniature pigs was higher than that in the heart. Gangliosides GD3, GD1a, GD1b, GT1b and GQ1b were observed in both the liver and heart, whereas GQ1b was detected only in the liver, indicating that the ganglioside expression profiles are tissue specific. Moreover, other ganglio-series gangliosides, including GM3, were not detected in the livers and hearts of NIH-miniature pigs. Taken together, these results suggest that gangliosides may play important roles in immune responses in clinical xenotransplants of pig livers and hearts.