• 제목/요약/키워드: Gamma-ray source

검색결과 276건 처리시간 0.025초

Performance of 3D printed plastic scintillators for gamma-ray detection

  • Kim, Dong-geon;Lee, Sangmin;Park, Junesic;Son, Jaebum;Kim, Tae Hoon;Kim, Yong Hyun;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2910-2917
    • /
    • 2020
  • Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.

저선량 $\gamma$선 조사가 토마토의 초기생육과 후속고선량 $\gamma$선 저항성에 미치는 영향 (Effects of low dose $\gamma$-ray on the early growth of tomato and the resistance to subsequent high doses of radiation)

  • 김재성;김진규;백명화;김동희
    • Journal of Radiation Protection and Research
    • /
    • 제24권3호
    • /
    • pp.123-129
    • /
    • 1999
  • 저선량 $\gamma$선 조사한 토마토 2품종, 서광과 하우스모모타로 종자의 발아와 초기생육 및 후속 고선량에 대한 생육효과를 조사하였다. 저선량에 의한 발아와 생육촉진효과는 품종에 따라 달랐다. 발아율의 경우 서광은 모든 저선량 조사구에서 증가되었으나, 하우스모모타로는 오히려 감소되었다. 유묘초장은 저선량 조사에 의해 증가되었으며 두 품종 모두 4 Gy와 8 Gy 조사구에서 가장 효과적이었다. 생육 2개월 후 서광의 초장은 억제되었으나 생체중은 4 Gy와 2 Gy에서 증가되었고, 하우스모모타로의 초장은 12 Gy와 20 Gy에서, 생체중은 20 Gy와 4 Gy에서 가장 높은 증가효과를 보였다. 토마토 식물체의 고선량 피폭에 의한 생육장해는 사전 저선량 조사에 의해 감소되었는데 서광의 경우 2 Gy와 8 Gy 조사구에서 저항성이 높았으며 하우스모모타로의 경우 모든 저선량 조사구에서 저항성 효과가 나타났으며 특히 2 Gy와 12 Gy 조사구에서 높았다.

  • PDF

Sensing changes in tumor during boron neutron capture therapy using PET with a collimator: Simulation study

  • Yang, Hye Jeong;Yoon, Do-Kun;Suh, Tae Suk
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2072-2077
    • /
    • 2020
  • The purpose of this study was to demonstrate the feasibility of sensing changes in a tumor during boron neutron capture therapy (BNCT) using a Monte Carlo simulation tool. In the simulation, an epi-thermal neutron source and a water phantom including boron uptake regions (BURs) were simulated. Moreover, this simulation also included a detector for positron emission tomography (PET) scanning and an adaptively-designed collimator (ADC) for PET. After the PET scanning of the water phantom, including the 511 keV source in the BUR, the ADC was positioned in the PET's gantry. Single prompt gamma rays were collected through the ADC during neutron irradiation. Then, single prompt gamma ray-based tomography images of different sized tumors were acquired by a four-step process. Both the signal-to-noise ratio (SNR) and tumor size were analyzed from each step image. From this analysis, we identified a decreasing trend of both the SNR and signal intensity as the tumor size decreased, which was confirmed in all images. In conclusion, we confirmed the feasibility of sensing changes in a tumor during BNCT using PET and an ADC through Monte Carlo simulation.

The effect of front edge on efficiency for point and volume source geometries in p-type HPGe detectors

  • Esra Uyar ;Mustafa Hicabi Bolukdemir
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4220-4225
    • /
    • 2022
  • Monte Carlo (MC) simulations are increasingly being used as an alternative or supplement to the gamma spectrometric method in determining the full energy peak efficiency (FEPE) necessary for radionuclide identification and quantification. The MC method is more advantageous than the experimental method in terms of both cost and time. Experimental calibration with standard sources is difficult, especially for specimens with unusually shaped geometries. However, with MC, efficiency values can be obtained by modeling the geometry as desired without using any calibration source. Modeling the detector with the correct parameters is critical in the MC method. These parameters given to the user by the manufacturer are especially the dimensions of the crystal and its front edge, the thickness of the dead layer, dimensions, and materials of the detector components. This study aimed to investigate the effect of the front edge geometry of the detector crystal on efficiency, so the effect of rounded and sharp modeled front edges on the FEPE was investigated for <300 keV with three different HPGe detectors in point and volume source geometries using PHITS MC code. All results showed that the crystal should be modeled as a rounded edge, especially for gamma-ray energies below 100 keV.

감마선 조사에 의한 농약 성분의 분해 연구 (Study on Decomposition of Several Pesticides by Gamma-Irradiation)

  • 이주상;정수연;오승열;장범수;박상현
    • 방사선산업학회지
    • /
    • 제6권3호
    • /
    • pp.205-209
    • /
    • 2012
  • The decomposition of 50 pesticides present in an aqueous solution using ${\gamma}-irradiation$ from a $^{60}Co$ gamma-ray source was investigated using laboratory-scale experiment. The rates of decomposition were determined using a gas chromatography-electron capture detector (GC-ECD), high-performance liquid chromatography-photo diode array detector (HPLC-PDA), and HPLC-fluorescence detector (FLD). When the initial concentration of pesticides was 10 ppm, and the radiation dose was 2, 5, 10, 20, and 30 kGy, respectively, 14 pesticide samples showed high removal rates (>50%) at absorbed doses of more than 10 kGy. With the exception of procymidone, they were all completely removed at a 30 kGy irradiation dose. These results provide fundamental data on the reactivity between gamma-irradiation and pesticides in an aqueous solution. Further, an evaluation of the toxicity of radiolytic intermediate products is required.

Labeling strategy to improve neutron/gamma discrimination with organic scintillator

  • Ali Hachem;Yoann Moline;Gwenole Corre;Bassem Ouni;Mathieu Trocme;Aly Elayeb;Frederick Carrel
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4057-4065
    • /
    • 2023
  • Organic scintillators are widely used for neutron/gamma detection. Pulse shape discrimination algorithms have been commonly used to discriminate the detected radiations. These algorithms have several limits, in particular with plastic scintillator which has lower discrimination ability, compared to liquid scintillator. Recently, machine learning (ML) models have been explored to enhance discrimination performance. Nevertheless, obtaining an accurate ML model or evaluating any discrimination approach requires a reference neutron dataset. The preparation of this is challenging because neutron sources are also gamma-ray emitters. Therefore, this paper proposes a pipeline to prepare clean labeled neutron/gamma datasets acquired by an organic scintillator. The method is mainly based on a Time of Flight setup and Tail-to-Total integral ratio (TTTratio) discrimination algorithm. In the presented case, EJ276 plastic scintillator and 252Cf source were used to implement the acquisition chain. The results showed that this process can identify and remove mislabeled samples in the entire ToF spectrum, including those that contribute to peak values. Furthermore, the process cleans ToF dataset from pile-up events, which can significantly impact experimental results and the conclusions extracted from them.

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

Understanding Phytosanitary Irradiation Treatment of Pineapple Using Monte Carlo Simulation

  • Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.87-94
    • /
    • 2013
  • Purpose: Pineapple is now the third most important tropical fruit in world production after banana and citrus. Phytosanitary irradiation is recognized as a promising alternative treatment to chemical fumigation. However, most of the phytosanitary irradiation studies have dealt with physiochemical properties and its efficacy. Accurate dose calculation is crucial for ensuring proper process control in phytosanitary irradiation. The objective of this study was to optimize phytosanitary irradiation treatment of pineapple in various radiation sources using Monte Carlo simulation. Methods: 3-D geometry and component densities of the pineapple, extracted from CT scan data, were entered into a radiation transport Monte Carlo code (MCNP5) to obtain simulated dose distribution. Radiation energy used for simulation were 2 MeV (low-energy) and 10 MeV (high-energy) for electron beams, 1.25 MeV for gamma-rays, and 5 MeV for X-rays. Results: For low-energy electron beam simulation, electrons penetrated up to 0.75 cm from the pineapple skin, which is good for controlling insect eggs laid just below the fruit surface. For high-energy electron beam simulation, electrons penetrated up to 4.5 cm and the irradiation area occupied 60.2% of the whole area at single-side irradiation and 90.6% at double-side irradiation. For a single-side only gamma- and X-ray source simulation, the entire pineapple was irradiated and dose uniformity ratios (Dmax/Dmin) were 2.23 and 2.19, respectively. Even though both sources had all greater penetrating capability, the X-ray treatment is safer and the gamma-ray treatment is more widely used due to their availability. Conclusions: These results are invaluable for optimizing phytosanitary irradiation treatment planning of pineapple.

방사성폐기물드럼 핵종분석에서 감마선 감쇠보정 방법들의 비교 평가 (Comparison of the Correction Methods for Gamma Ray Attenuation in the Radioactive Waste Drum Assay)

  • 지영용;유영걸;곽경길;강덕원;김기홍
    • 방사성폐기물학회지
    • /
    • 제4권3호
    • /
    • pp.275-284
    • /
    • 2006
  • 실제 드럼 내에 존재하는 핵종으로부터 방출되는 감마선을 외부에서 측정하여 그로부터 드럼 내 핵종의 양을 정확하게 분석하기 위해서는 먼저 적절한 교정표준의 선택과 드럼 내 매질의 밀도와 핵종의 분포에 대한 감마선 감쇠보정이 반드시 필요하다. 본 연구에서는 드림 내 핵종의 분석을 위하여 밀도가 다른 두 개의 모델드럼을 이용하였으며 전송선원으로써는 $^{152}Eu$(10 mCi), 표준선원으로는 혼합선원($^{133}Ba,\;^{137}Cs,\;^{60}Co$)을 이용하였다. 그리고 드럼과 검출기 사이의 거리를 달리하면서 모델드럼 내의 표준선원으로부터 나오는 감마선을 계측하여, 감쇠보정이 되지 않은 이 측정값에 3 종류의 감마선 감쇠보정을 각각 수행하였다. 그 결과 밀도가 낮은 드럼에서의 오차는 10 % 이하이었고, 밀도가 높은 드럼에서의 오차는 25 % 이하이었다. 또한 드럼과 검출기사이의 거리가 근거리(70 cm, 드림구획 : 10 segments)일 때, 오차는 원거리(90 cm, 드럼구획 : 8 segments)에서의 오차보다는 낮았는데 이는 상대적으로 1 segment에 대한 부피차이에 기인한 밀도 측정오차가 낮고 감마선의 산란이 낮았기 때문이다.

  • PDF

Application of a deep learning algorithm to Compton imaging of radioactive point sources with a single planar CdTe pixelated detector

  • Daniel, G.;Gutierrez, Y.;Limousin, O.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1747-1753
    • /
    • 2022
  • Compton imaging is the main method for locating radioactive hot spots emitting high-energy gamma-ray photons. In particular, this imaging method is crucial when the photon energy is too high for coded-mask aperture imaging methods to be effective or when a large field of view is required. Reconstruction of the photon source requires advanced Compton event processing algorithms to determine the exact position of the source. In this study, we introduce a novel method based on a Deep Learning algorithm with a Convolutional Neural Network (CNN) to perform Compton imaging. This algorithm is trained on simulated data and tested on real data acquired with Caliste, a single planar CdTe pixelated detector. We show that performance in terms of source location accuracy is equivalent to state-of-the-art algorithms, while computation time is significantly reduced and sensitivity is improved by a factor of ~5 in the Caliste configuration.