• Title/Summary/Keyword: Gamma-Ray Spectroscopy

Search Result 134, Processing Time 0.026 seconds

Radiation induced synthesis of (gelatin-co-PVA)-g-poly (AAc) copolymer as wound dressing material

  • Kaur, Inderjeet;Bhati, Pooja;Sharma, Sushma
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.183-197
    • /
    • 2014
  • Copolymers of gelatin and poly (vinyl alcohol), (PVA) grafted by acrylic acid (AAc) with excellent water absorption and retention abilities under neutral conditions were successfully synthesized using $^{60}Co$ gamma radiations in presence of ammonium persulphate (APS), as water soluble initiator and sodium bicarbonate ($NaHCO_3$) as foaming agent. The optimum synthesis conditions pertaining to maximum swelling percentage were evaluated as a function of gelatin/PVA ratio, amount of water, concentration of APS, $NaHCO_3$, monomer concentration and total irradiation dose. Maximum percent swelling (1694.59%) of the copolymer, gelatin-co-PVA, was obtained at optimum $[APS]=2.92{\times}10^{-1}mol/L$, $[NaHCO_3]=7.94{\times}10^{-2}mol/L$ and 1.5 mL of water at total dose of 31.104 kGy while in case of grafted copolymer, (gelatin-co-PVA)-g-poly(AAc), maximum percent swelling (560.86%) was obtained using $8.014{\times}10^{-1}mol/L$ of AAc in 9 mL water with 31.104 kGy preirradiation dose. The pristine and grafted copolymers were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning electron Microscopy (SEM), Thermal gravimetric analysis (TGA) and X-Ray Diffraction (XRD) methods. The copolymers loaded with an antiseptic, Povidone, were used as wound dressing materials for wounded gastrocnemius muscle of mice and the results exhibit that (gelatin-co-PVA)-g-poly (AAc) copolymer is a potent wound dressing material as compared to the copolymer.

Implementation of Efficient Pile-up Pulse Processing Algorithm Based on Trapezoidal Filter (사다리꼴 필터를 이용한 효율적인 중첩펄스 처리 알고리즘 구현)

  • Piao, Zheyan;Chung, Jin-Gyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.162-167
    • /
    • 2013
  • X-ray or ${\gamma}$-ray spectroscopy systems are widely used for analyzing material characteristics. Pile-up pulses are very often encountered for several reasons in XRF systems. Thus, it is necessary to reject or recover pile-up pulses to accurately analyze the material under test. In this paper, a pile up pulse rejection and recovery method is presented for XRF systems using trapezoidal pulse shaping of the input signals. Since the proposed method is based on the trapezoidal pulse shaping method widely-used in XRF systems, only two counters and a few registers are needed to implement the additional function of pile-up pulse rejection and recovery. Consequently, the proposed system is much simpler than conventional pulse reconstruction systems. It is shown that the proposed method can detect and reject pile-up pulses exactly. It is also shown that the pile-up pulses can be recovered if some conditions are satisfied.

Determination of Impurities in Aluminum by Neutron Activation Analysis

  • Kim, Nak-Bae;Bak, Hae-ill;Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 1980
  • A radiochemical separation scheme for the neutron activation analysis is developed for the determination of 28 elements in aluminum. The scheme is based on a group separation using ion-exchange resin and mineral exchanger. Present work has employed mineral acids and their partly organic mixture excluding HF as the media as well as common glass wares. For the determination, gamma-ray spectroscopy using $3"\times3"\;Nal(TI)$ detector and a single comparator method are used.

  • PDF

U.S. FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT

  • Miller, M.C.;Vega, D.A.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.6
    • /
    • pp.803-810
    • /
    • 2013
  • The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT) Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans.

Detection of Radiation Degradation of LDPE by ESR Spectroscopy (전자스핀공명을 이용한 저밀도 폴리에틸렌의 방사선 열화 검지)

  • Kim Ki-Yup;Lee Chung;Ryu Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.81-86
    • /
    • 2005
  • This study has investigated radiation degradation of low density polyethylene(LDPE). Samples were irradiated up to 800kGy using a $Co^{60}\;\gamma-ray$ at a dose rate of 5kGy/hr in the presence of air atmosphere at room temperature. After irradiation, storing for 2 weeks, free radical measurement of LDPE has established by electron spin resonance(ESR). ESR measurement showed that free radical concentration(FRC) was increased with radiation dose and decreased with the time. The radical types showed alkyl, allyl, and peroxy radical with the irradiation, these changed to peroxy radical with the time.

Detection and Absorbed-Dose Estimation of Irradiated Enzyme Powder Using ESR Spectroscopy (ESR Spectroscopy를 이용한 방사선 조사 효소분말의 검지와 흡수선량 예측)

  • Chung, Hyung-Wook;Jeong, Jae-Young;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1159-1163
    • /
    • 1999
  • Along with the increasing demands for food irradiation technology in the food industry, a proper detection means for controlling irradiated foods is required. Enzyme powder, which is permitted to be irradiated in Korea, was subjected to a detection trial by ESR spectroscopy. The high correlation coefficients were observed between the absorbed doses ranging from 2.5 to 15.0 kGy and the corresponding ESR signal intensity, such as $R^2$ = 0.9904 in gamma irradiation and $R^2$ = 0.9696 in electron beam. Pre-established threshold values for both non-irradiated control (1.19) and 2.5 kGy-irradiated samples (6.97 in gamma-ray; 7.36 in electron-beam) were successfully applicable to the detection of 30 coded unknown samples of enzyme powder. The calibration curves obtained from the samples irradiated at 2.5 to 15 kGy were expected to be potentially adopted to estimate absorbed doses ranging front 4 to 7 kGy with a quadratic equation.

  • PDF

Geostatistical Interpretation of Cs-137 and K-40 Result of the Lithosphere in the Vicinity of Youngkwang Nuclear Power Plant (지구통계학적 방법에 의한 영광원전주변 토층내 Cs-137 및 K-40 측정 결과의 해석)

  • 김경웅;이재석;문승현;박철승;고일원;고은정;조병옥;정철영;전수열
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.545-552
    • /
    • 2002
  • In order to investigate the influence of nuclear power plant operation on its nearby environment, soil, stream and marine sediment samples were collected in the vicinity of the Youngkwang Nuclear Power Plant in Korea, and analyzed for artificial and natural radionuclide radioactivity. From the analytical result, Cs-137 was detected in most soil samples. but it may have been derived fiom past nuclear weapon tests because Cs-134 having short half-live was not detected. The radioactivities of Cs-137 in the sediment samples were also detected which are within the normal range in the sediments based upon the published literature between 1997 and 1999. For the quality control of radioactivity analysis of environmental samples, sets of marine sediments in the Gamami area were analyzed using two HPGe Gamma-ray Spectroscopes (30% and 45%) according to the geostatistical sampling strategy, and Cs-137 and K-40 results were interpreted by analysis of variance (ANOVA). In the two-way ANOVA, variances derived from the geochemical variation were significant, but errors from sampling and analytical procedures are negligible. In conclusion. all the radioanalytical procedures of this study including sampling are validated to be acceptable.

P123-Templated Co3O4/Al2O3 Mesoporous Mixed Oxides for Epoxidation of Styrene

  • Jung, Mie-Won;Kim, Young-Sil
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.316-320
    • /
    • 2012
  • $Co_3O_4$, $Al_2O_3$ and $Co_3O_4$/$Al_2O_3$ mesoporous powders were prepared by a sol-gel method with starting matierals of aluminum isopropoxide and cobalt (II) nitrate. A P123 template is employed as an active organic additive for improving the specific surface area of the mixed oxide by forming surfactant micelles. A transition metal cobalt oxide supported on alumina with and without P123 was tested to find the most active and selective conditions as a heterogeneous catalyst in the reaction of styrene epoxidation. A bBlock copolymer-P123 template was added to the staring materials to control physical and chemical properties. The properties of $Co_3O_4$/$Al_2O_3$ powder with and without P123 were characterized using an X-ray diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), a Bruner-Emmertt-Teller (BET) surface analyzer, and $^{27}Al$ MAS NMR spectroscopy. Powders with and without P123 were compared in catalytic tests. The catalytic activity and selectivity were monitored by GC/MS, $^1H$, and $^{13}C$-NMR spectroscopy. The performance for the reaction of epoxidation of styrene was observed to be in the following order: [$Co_3O_4$/$Al_2O_3$ with P123-1173 K > $Co_3O_4$/$Al_2O_3$ with P123-973 K > $Co_3O_4$-973 K>$Co_3O_4$/$Al_2O_3$-973 K > $Co_3O_4$/$Al_2O_3$ with P123-1473 K > $Al_2O_3$-973 K]. The existence of ${\gamma}$-alumina and the nature of the surface morphology are related to catalytic activity.

The Properties of Boron-doped Zinc Oxide Film Deposited according to Oxygen Flow Rate

  • Kim, Dong-Hae;Son, Chan-Hee;Yun, Myoung-Soo;Lee, Jin-Young;Jo, Tae-Hoon;Seo, Il-Won;Jo, I-Hyun;Roh, Jun-Hyung;Choi, Eun-Ha;Uhm, Han-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.358-358
    • /
    • 2012
  • The application of BZO (Boron-doped Zinc Oxide) films use as the TCO(Transparent Conductive Oxide) material for display and solar cell industries, where the conductivity of the BZO films plays a critical role for improvement of cell performance. Thin BZO films are deposited on glass substrates by using RF sputter system. Then charging flow rates of O2 gas from zero to 10 sccm, thereby controlling the impurity concentration of BZO. BZO deposited on soda lime glass and RF power was 300 W, frequency was 13.56 MHz, and working pressure was $5.0{\times}10-6$ Torr. The Substrate and glass between distance 200 mm. We measured resistivity, conductivity, mobility by hall measurement system. Optical properties measured by photo voltaic device analysis system. We measured surface build according to oxygen flow rate from XPS (X-ray Photoelectron Spectroscopy) system. The profile of the energy distribution of the electrons emitted from BZO films by the Auger neutralization is measured and rescaled so that Auger self-convolution arises, revealing the detail structure of the valence band. It may be observed coefficient ${\gamma}$ of the secondary electron emission from BZO by using ${\gamma}$-FIB (Gamma-Focused Ion Beam) system. We observed the change in electrical conductivity by correlation of the valence band structure. Therefore one of the key issues in BZO films may be the valence band that detail structure dominates performance of solar cell devices. Demonstrating the secondary electron emission by the Auger neutralization of ions is useful for the determination of the characteristics of BZO films for solar cell and display developments.

  • PDF

Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan

  • Umair Azeem;Hannan Younis;Niamat ullah;Khurram Mehboob;Muhammad Ajaz;Mushtaq Ali;Abdullah Hidayat;Wazir Muhammad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.207-215
    • /
    • 2024
  • This study focuses on measuring the levels of naturally occurring radioactivity in the soil of Swabi, Khyber Pakhtunkhwa, Pakistan, as well as the associated health hazard. Thirty (30) soil samples were collected from various locations and analyzed for 226Ra, 232Th, and 40K radioactivity levels using a High Purity Germanium detector (HPGe) gamma-ray spectrometer with a photo-peak efficiency of approximately 52.3%. The average values obtained for these radionuclides are 35.6 ± 5.7 Bqkg-1, 47 ± 12.5 Bqkg-1, and 877 ± 153 Bqkg-1, respectively. The level of 232Th is slightly higher and 40K is 2.2 times higher than the internationally recommended limit of 30 Bqkg-1 and 400 Bqkg-1, respectively. Various parameters were calculated based on the results obtained, including Radium Equivalent (Raeq), External Hazard (Hex), Absorbed Dose Rate (D), Annual Gonadal Equivalent Dose (AGDE), Annual Effective Dose Rate, and Excess Lifetime Cancer Risk (ELCR), which are 170.3 ± 24 Bqkg-1, 0.46 ± 0.06 Bqkg-1, 81.4 ± 2.04 nGy h-1, 582 ± 78.08 µSvy-1, 99.8 ± 13.5 µSv Gy-1, and 0.349 ± 0.04, respectively. These values are below the limits recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) in 2002. This study highlights the potential radiation threats associated with natural radioactivity levels in the soil of Swabi and provides valuable information for public health and safety.