• 제목/요약/키워드: Gamma-Ray Astronomy

검색결과 112건 처리시간 0.022초

Gamma-Ray Burst Observation by SNIPE mission

  • Lee, Jae-Jin;Kim, Hong Joo;Nam, Uk-Won;Park, Won-Kee;Shon, Jongdae;Kim, Soon-Wook;Kim, Jeong-Sook;Kang, Yong-Woo;Uhm, Z. Lucas;Kang, Sinchul;Im, Sang Hyeok;Kim, Sunghwan
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.39.3-40
    • /
    • 2020
  • For the space weather research, KASI (Korea Astronomy and Space Science Institute) is developing the SNIPE (Small-scale magNetospheric and Ionospheric Plasma Experiment) mission, which consists of four 6U CubeSats of ~10 kg. Besides of space weather research, the SNIPE mission has another astrophysical objective, detecting Gamma-Ray Bursts(GRB). By cross-correlating the light curves of the detected GRBs, the fleet shall be able to determine the time difference of the arriving signal between the satellites and thus determine the position of bright short bursts with an accuracy ~100'. To demonstrate the technology of the GRB observation, CSI gamma-ray detectors combined with GPS and IRIDIUM communication modules are placed on each SNIPE CubeSat. The time of each spacecraft is synchronized and when the GRB is detected, the light curve will be transferred to the Mission Operation Center (MOC) by IRIDIUM communication module. By measuring time difference of each GRB signals, the technology for localization of GRB will be proved. If the results show some possibilities, we can challenge the new astrophysical mission for investigating the origin of GRB.

  • PDF

MOGABA: Monitoring of Gamma-ray Bright AGN with KVN 21-m radio telescopes at 22 and 43GHz

  • 이상성;양지혜;변도영;손봉원
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • We introduce an ongoing project for monitoring total flux density at 22 and 43GHz, linearly polarized flux, and polarization angle at 22GHz of Gamma-ray bright AGN (Active Galactic Nuclei) with KVN (Korean VLBI Network) 21-m radio telescopes. The project started in May, 2011 with an effective monitoring cycle of 4 days, observing four main objects (3C 454.3, BL Lac, 3C 273, and 3C 279). More objects were included in the source list when they had flared in Gamma-ray. In this paper, we report the current status of the project and preliminary results for the monitoring observations.

  • PDF

FIRST KOREAN OBSERVATIONS OF GAMMA-RAY BURST AFTERGLOWS AT MT. LEMMON OPTICAL ASTRONOMY OBSERVATORY (LOAO)

  • Lee, In-Duk;Im, Myung-Shin;Urata, Yuji
    • 천문학회지
    • /
    • 제43권3호
    • /
    • pp.95-104
    • /
    • 2010
  • We outline our GRB afterglow observation program using the 1-m telescope at Mt. Lemmon Optical Astronomy Observatory (LOAO), and report the first observations of the GRB afterglows. During the 2007B semester, we performed follow-up imaging obsrevations of 6 GRBs, and succeeded in detecting four GRB afterglows (GRB 071010B, GRB 071018, GRB 071020, and GRB 071025) while placing useful upper limits on the light curves of the other GRBs. Among the observed events, we find that three events are special and interesting. GRB 071010B has a light curve which has an unusually long jet break time of 11.8 days. For GRB 071025, its red R-I(~2) color suggests that it is likely to be at z~5. GRB 071020 has a light curve which shows a clear brightening at 0.3-1 days after the burst, where our LOAO data play a crucial role by providing an unambiguous evidence for the brightening. These are the first successful detections of GRB afterglows by a facility owned and operated by a Korean institution, demonstrating the usefulness of the 1-m telescope for transient phenomena such as GRBs up to very high redshift.

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • 제30권3호
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

On the Spectral Shape of Non-recycled γ-ray Pulsars

  • Hui, Chung-Yue;Lee, Jongsu
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권2호
    • /
    • pp.101-104
    • /
    • 2016
  • More than 100 γ−ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ) γ−ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL) pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified γ−ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the γ−ray pulsar population, which can place a tight constraint on the emission geometry.

MOGABA: Monitoring of Gamma-ray Bright AGN with KVN 21-m radio telescopes at 22, 43 and 86GHz

  • 이상성;변도영;백준현;한명희;양지혜;손봉원
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.239.2-239.2
    • /
    • 2012
  • We report preliminary results of MOGABA project for monitoring total flux density, linearly polarized flux, and polarization angle at 22, 43 and 86GHz of Gamma-ray bright AGN (Active Galactic Nuclei) with KVN (Korean VLBI Network) 21-m radio telescopes. The project has been conducted in one year since May 2011 with an effective monitoring cycle of 1 week, observing four main objects (3C 454.3, BL Lac, 3C 273, and 3C 279). More objects were included in the source list when they had flared in Gamma-ray. Especially, we included a compact radio source at the Galactic center, SgrA* since Jan. 2012. In this paper, we report the current status of the project and preliminary results for the monitoring observations.

  • PDF

Identification Of Jet Components Of CTA 102 On Milliarcsecond Scales Using The iMOGABA Program

  • Kim, Sang-Hyun;Lee, Sang-Sung;Hodgson, Jeffrey A.;Lee, Jee Won;Kang, Sincheol;Yoo, Sung-Min
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.76.1-76.1
    • /
    • 2019
  • CTA 102, one of gamma-ray bright active galactic nuclei (AGN) has been observed with Korean very long baseline interferometry (VLBI) network (KVN) during the period of 2012 December-2018 May as part of interferometric Monitoring Of Gamma-ray Bright AGN (iMOGABA). Multi-frequency VLBI observations enable us to compare the milliarcsecond(mas)-scale iMOGABA images of relativistic jets with those from the Monitoring Of Jets in AGN with Very long baseline array (VLBA) Experiments (MOJAVE) and the VLBA-Boston University(BU)-BLAZAR programs which use VLBA with its angular resolutions of 0.2-1.3 mas. In spite of the relative larger beam sizes of KVN (1-10 mas), we are able to identify jet components of CTA 102 using the KVN multi-frequency VLBI observations with those resolved with VLBA. Considering an instrumental beam blending effect on the jet component identification, we were able to obtain a blending shift of the core position based on a convolution analysis using the VLBA data. When we apply the core position shift to the KVN images of CTA 102, we find that the identified jet components of CTA 102 from the KVN observations are well matched with those from the VLBA observations. Based on the results of the analysis, we may be able to study the jet kinematics and its correlation with gamma-ray flare activity.

  • PDF

Investigation of the Jets of the Blazar 3C 279 with Korean VLBI Network (KVN) 22-129 GHz Observations

  • Yoo, Sungmin;Lee, Sang-Sung;Kim, Sang-Hyun;An, Hongjun
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권4호
    • /
    • pp.193-202
    • /
    • 2021
  • We present analysis results of Korean VLBI Network (KVN) four-band data for the highly variable blazar 3C 279. We measured the 22, 43, 86, and 129 GHz flux densities and spectral indices of the source using contemporaneous data taken over 5.6 years. We used the discrete correlation function to investigate correlations between the radio emission properties and those measured in the optical (2 × 1014 - 1.5 × 1015 Hz), X-ray (0.3-10 keV), and gamma-ray (0.1-300 GeV) bands. We found a significant correlation between the radio spectral index and gamma-ray flux without a time delay and interpreted the correlation using an extended jet scenario for blazar emission.

Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

  • Jo, Yun-A;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권4호
    • /
    • pp.247-256
    • /
    • 2016
  • An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at ~ 0.1 and ~ 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.

INTERFEROMETRIC MONITORING OF GAMMA–RAY BRIGHT ACTIVE GALACTIC NUCLEI II: FREQUENCY PHASE TRANSFER

  • ALGABA, JUAN-CARLOS;ZHAO, GUANG-YAO;LEE, SANG-SUNG;BYUN, DO-YOUNG;KANG, SIN-CHEOL;KIM, DAE-WON;KIM, JAE-YOUNG;KIM, JEONG-SOOK;KIM, SOON-WOOK;KINO, MOTOKI;MIYAZAKI, ATSUSHI;PARK, JONG-HO;TRIPPE, SASCHA;WAJIMA, KIYOAKI
    • 천문학회지
    • /
    • 제48권5호
    • /
    • pp.237-255
    • /
    • 2015
  • The Interferometric Monitoring of Gamma–ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma–ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non–optimal weather conditions.