• Title/Summary/Keyword: Gamma shielding

Search Result 188, Processing Time 0.04 seconds

Feasibility of clay-shielding material for low-energy photons (Gamma/X)

  • Tajudin, S.M.;Sabri, A.H.A.;Abdul Aziz, M.Z.;Olukotun, S.F.;Ojo, B.M.;Fasasi, M.K.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1633-1637
    • /
    • 2019
  • While considering the photon attenuation coefficient (${\mu}$) and its related parameters for photons shielding, it is necessary to account for its transmitted and reflected photons energy spectra and dose contribution. Monte Carlo simulation was used to study the efficiency of clay ($1.99g\;cm^{-3}$) as a shielding material below 150 keV photon. Am-241 gamma source and an X-ray of 150 kVp were calculated. The calculated value of ${\mu}$ for Am-241 is higher within 5.61% compared to theoretical value for a single-energy photon. The calculated half-value layer (HVL) is 0.9335 cm, which is lower than that of ordinary concrete for X-ray of 150 kVp. A thickness of 2 cm clay was adequate to attenuate 90% and 85% of the incident photons from Am-241 and X-ray of 150 kVp, respectively. The same thickness of 2 cm could shield the gamma source dose rate of Am-241 (1 MBq) down to $0.0528{\mu}Sv/hr$. For X-ray of 150 kVp, photons below 60 keV were significantly decreased with 2 cm clay and a dose rate reduction by ~80%. The contribution of reflected photons and dose from the clay is negligible for both sources.

A novel barium oxide-based Iraqi sand glass to attenuate the low gamma-ray energies: Fabrication, mechanical, and radiation protection capacity evaluation

  • Al-Saeedi, F.H.F.;Sayyed, M.I.;Kapustin, F.L.;Al-Ghamdi, Hanan;Kolobkova, E.V.;Tashlykov, O.L.;Almuqrin, Aljawhara H.;Mahmoud, K.A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3051-3058
    • /
    • 2022
  • In the present work, untreated Iraqi sand with grain sizes varied between 100 and 200 ㎛ was used to produce a colored glass sample that has shielding features against the low gamma-ray energy. Therefore, a weight of 70-60 wt % sand was mixed with 9-14 wt% B2O3, 8-10 wt% Na2O, 4-6 wt% of CaO, 3-6 wt% Al2O3, in addition to 0.3% of Co2O3. After melting and annealing the glass sample, the X-ray diffraction spectrometry was applied to affirm the amorphous phase of the fabricated glass samples. Moreover, the X-ray dispersive energy spectrometry was used to measure the chemical composition, and the MH-300A densimeter was applied to measure the fabricated sample's density. The Makishima-Makinzie model was applied to predict the mechanical properties of the fabricated glass. Besides, the Monte Carlo simulation was used to estimate the fabricated glass sample's radiation shielding capacity in the low-energy region between 22.1 and 160.6 keV. Therefore, the simulated linear attenuation coefficient changed between 10.725 and 0.484 cm-1, raising the gamma-ray energy between 22.1 and 160.6 keV. Also, other shielding parameters such as a half-value layer, pure lead equivalent thickness, and buildup factors were calculated.

A study on shield on the center of gravity moving designed for high efficiency operation for the gamma-ray imaging detector (감마선 영상화 장치용 고효율 동작을 위한 차폐체 무게중심 이동 설계에 관한 연구)

  • Park, Gang-teck;Lee, Nam-ho;Hwang, Young-gwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.948-949
    • /
    • 2016
  • In this study, we perform the structure change of the shielding this is applied for gamma-ray detectors for imaging of gamma-ray source. Through previous studies, we implemented the commercially available gamma-ray imaging apparatus similar to the shielding body but weight reduction, center of gravity moving of shield. In this paper, we changed a shield for motion control detectors efficient movement. We performed the MCNP simulation of shield design and then we obtained the results of reducing the weight of the 17% and moving of center of gravity the shield center.

  • PDF

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code

  • Mahmoud, K.A.;Sayyed, M.I.;Tashlykov, O.L.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1835-1841
    • /
    • 2019
  • The mass attenuation coefficient ${\mu}_m$ for eight rock samples having different chemical composition was simulated using the MCNP 5 code in energy range($0.002MeV{\leq}E{\leq}10MeV$). Moreover, the ${\mu}_m$ for the studied rock samples was computed theoretically using XCOM database. The comparison between simulated and computed data for all selected rock samples showed a good agreement with differences varied between 0.01 and 8%. The highest ${\mu}_m$ was found for basalt rocks M2 and M1 and the lowest one is reported for limestone rocks Dike. The simulated values of the ${\mu}_m$ then were used to calculate other important shielding parameters such as the mean free path, effective electron density and effective atomic number. The exposure buildup factor EBF was also computed for the selected rocks with the contribution of G-P fitting parameters and the highest EBF attended by the basalt sample Sill and varied between 1.022 and 744 in the energy range between ($0.015MeV{\leq}E{\leq}15MeV$) but the lowest EBF achieved by basalt sample M2 and varied between 1.017 and 491 in the same energy range.

Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria (몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산)

  • Kim, Soon-Young;Kim, Jong-Kyung;Kim, Kyo-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 1994
  • The MCNP 4.2 code was used to calculate the thermal neutron flux distributions for $(n,\;{\gamma})$reaction in mainshell, annular plate, and subshell of the calandria of a CANDU 6 plant during operation. The thermal neutron flux distributions in calandria mainshell, annular plate, and subshell were in the range of $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$ which is somewhat higher than the previous estimates calculated by DOT 4.2 code. As an application to shielding analysis, photon dose rates outside the side and bottom shields were calculated. The resulting dose rates at the reactor accessible areas were below design target, $6 {\mu}Sv/h$. The methodology used in this study to evaluate the thermal neutron flux distribution for $(n,\;{\gamma})reaction$ can be applied to radiation shielding analysis of CANDU 6 type plants.

  • PDF

Transmission Dose Measurement of Gamma-ray Using Tungsten Shield (텅스텐 차폐체의 감마선 투과선량 측정)

  • Han, Sang-Hyun;Koo, Bon-Yeoul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.124-129
    • /
    • 2018
  • This study was conducted to investigate the penetration dose and shielding rates of tungsten shields used in apron material by changing the type of source used in the nuclear medicine department, thickness of shielding material and distance between the source and detector. For the experiment, the source, shield, and detector were arranged in a straight line and measured with an inspector at a height of 100 cm. The highest shielding effect of tungsten was measured for $^{201}Tl$, while $^{123}I$ showed a higher shielding effect than $^{99m}Tc$. For the sources used in the experiment, the penetration dose decreased with distance and the shielding rate was measured with thicker thickness. However, the shielding rate of $^{13}1I$ and $^{18}F$ sources was found to be lower than when there was no shielding at 0.25 mmPb shield. Therefore, even if the radiation shielding effect of tungsten is high, considering the characteristics according to the type of source and the thickness of the shielding material, it may be helpful to reduce the exposure.

BENCHMARK CALCULATION OF CANDU END SHIELDING SYSTEM

  • Gyuhong Roh;Park, Hangbok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.618-623
    • /
    • 1998
  • A shielding analysis was performed for the end shield of CANDU 6 reactor. The one-dimensional discrete ordinate code ANISN with a 38-group neutron-gamma library, extracted from DLC-37D library, was used to estimate the dose rate for the natural uranium CANDU reactor. For comparison MCNP-4B calculation was performed for the same system using continuous, discrete and multi-group libraries. The comparison has shown that the total dose rate of the ANISN calculation agrees well with that of the MCNP calculation. However, the individual dose rate (neutron and gamma) has shown opposite trends between AMISN and MCNP estimates, which may require a consistent library generation for both codes.

  • PDF