• Title/Summary/Keyword: Gamma radiography

Search Result 35, Processing Time 0.018 seconds

$\gamma$-선 Radiography에 있어서의 피사체 산란선에 관한 연구

  • 허남;야고이명
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.223-228
    • /
    • 1972
  • In the radiography, of thick materials the scattered rays from an object are one of major causes to reduce the quality of the radiographic image on the film. To determine the rate of scattering of incident gamma rays by an objective specimen, film blacknesses are measured for various slit widths. For each measurement, the changes of a penetrameter's sensitivity are also evaluated. It is observed that the fault-detectability can be improved by reducing the slit width when the fault detectability deteriorates due to the increase in scattered gamma rays by thicker samples. This experiment has been carried out with the iron specimens and $^{60}$ Co source.

  • PDF

Optimum Angle of Incidence for General Anteroposterior Radiographic Image According to Lordosis angle : For Obese People

  • Kwak, Jong Hyeok;Kim, Gyeong Rip;Cho, Hee Jung;Moon, Sung Jin;Lee, Eun Sook;Sung, Soon Ki
    • International Journal of Contents
    • /
    • v.17 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • The obesity leads to be the result of the weakening of anatomical structure as well as the gravity effect. And, the obesity interferes with normal sagittal balance and fails to maintain a straight posture with minimal energy. Therefore, the obesity can be an important factor in causing back pain by changing the lumbar lordosis. In this study, we will present an appropriate angle of incidence for obese people to reduce the image distortion of L4, L5 during a general anteroposterior radiography examination. To reduce image distortion according to the change of lordosis, the angle of incidence was applied 9 ° and 21 ° to L4 and L5 vertebra body when obesity and low back pain (LBP) perform the general anteroposterior radiography examination.

RADIOPACITY COMPARISON OF TOOTH COLORED RESTORATIVE MATERIALS WITH DIGITAL RADIOGRAPHY (디지털 방사선사진술을 이용한 치아색 수복물의 방사선불투과도 비교)

  • Kim, Hyo-Jung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.499-508
    • /
    • 2000
  • The purposes of this study were to evaluate the validity of 2 kinds of digital radiography techniques in evaluating the radiopacity comparison of restorative materials and to determine the relative radiopacities of several kinds of compomer and flow able resin using these techniques. After taking radiographs of an aluminum step wedge, con-elation of optical density calibration curves were evaluated between conventional radiography with transmission densitometer and CD-Dent digital radiography (storage phosphor system) and between conventional one and RVG$^{(R)}$ digital radiography (CCD system). Compomers such as Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Dyract flow$^{(R)}$, and flowable resins such as Ultraseal-XT$^{(R)}$ plus$^{TM}$, Revolution$^{TM}$, Aeliteflo$^{TM}$ and Tetric-flow$^{(R)}$ were used. Five specimens of 5mm in diameter and 2 mm thick were fabricated with each material. Radiopacities of the materials were measured using the above radiographic techniques and compared. The results were as follows: 1. When the optical density calibration curves were compared, conventional radiography and both CD-Dent and RVG$^{(R)}$ digital radiographies showed very high inverse correlations (${\gamma}$=-0.95, ${\gamma}$=-0.98 ; p<0.05). 2. All the tested restorative materials showed levels of radiopacity the same as or greater than that of dentin (p<0.05), Radiopacities of Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Tetric flow$^{(R)}$ were greater than those of Revolution$^{TM}$, Aeliteflo$^{TM}$, or dentin (p<0.05). 3. Radiopacities of Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Tetric flow$^{(R)}$ were shown to be greater than that of enamel when conventional radiography and CD-Dent digital radiography were used (p<0.05). Radiopacity of Dyract flow$^{(R)}$ was shown to be greater than that of Enamel when conventional radiography was used (p<0.05).

  • PDF

Convergence Modeling and Reproduction of a Bigyeokjincheolloe (Bomb Shell) Based on Three-dimensional Scanning and 𝛾-ray Radiography

  • Kim, Da Sol;Jo, Young Hoon;Huh, Il Kwon;Byun, Sung Moon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.55-63
    • /
    • 2022
  • The Bigyeokjincheolloe (bomb shell), a scientific cultural heritage, has outstanding historical value for sustaining a gunpowder weapon of Joseon. In this study, the bomb shell was modeled through three-dimensional (3D) scanning centered on the external shape and 𝛾-ray radiography-based on the internal shape. In particular, to improve the contrast in the radiographic image, optimization and image processing were performed. After these processes, the thickness of the inner wall (2.5 cm on average) and the positions of the three mold chaplets were clearly revealed. For exhibition purposes, the 3D model of the bomb shell was output to a 3D printer and the output was rendered realistic by coloring. In addition, the internal functional elements, such as Mokgok, fuse, mud, gunpowder, and caltrops, were reproduced through handwork. The results will contribute to the study of digital heritages in two ways. First, the internal and external shapes of the bomb shell were modeled by fusing two different technologies, namely, 3D scanning and 𝛾-ray radiography. Second, the internal shape of the bomb shell was constructed from the original form data and the reproduction was utilized for museum exhibitions. The developed modeling approach will greatly expand the scope of museum exhibitions, from those centered on historical content to those centered on scientific content.

DETECTION OF EARLY PROXIMAL CARIES WITH LASER FLUORESCENCE (레이저 형광법을 이용한 인접면 우식증의 진단)

  • Seol, Jae-Heon;Oh, You-Hyang;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.236-246
    • /
    • 2004
  • Artificial carious lesions in various depths were observed with visual examination using light transillumination, bite-wing radiography, laser fluorescence, and dye-enhanced laser fluorescence to determine the reproducibility, correlation of each diagnostic method, diagnostic sensitivity and diagnostic specificity. And optical densities according to demineralized times were measured whether laser fluorescence could be used as a quantitative diagnostic method. The following results were obtained whether laser fluorescence could be used for diagnosis of initial proximal caries. 1. Tau-c values of visual examination was 0.08 which showed lowest reproducibility and those of bite-wing radiography, laser fluorescence, dye-enhanced laser fluorescence were 0.60, 0.48, and 0.64, respectively which showed relatively high reproducibility. 2. The correlation between demineralization time and each examination was the highest in dye-enhanced laser fluorescence$({\gamma}=0.51)$ followed by laser fluorescence$({\gamma}=0.43)$, bite-wing radiograph$({\gamma}=0.35)$, and visual examination$({\gamma}=0.33)$. Dye-enhanced laser fluorescence and laser fluorescence showed significant correlation with demineralization time. 3. The sensitivity of laser fluorescence and dye-enhanced laser fluorescence for diagnosing approximal caries based on bite-wing radiography were 67%, 100% and those of specificity were 57%, 11% which showed diagnostic specificity was relatively lower than sensitivity. 4. The difference in optical density(DFR) between sound teeth and carious lesions according to lesion depth was high with dye-enhanced laser fluorescence compared with laser fluorescence. DFR measured with laser fluorescence according to changes in lesion depth was statistically significant but was not statistically significant with dye-enhanced laser fluorescence. Based on these results, laser fluorescence and dye-enhanced laser fluorescence have comparable diagnostic power as bite-wing radiography in early diagnosis of proximal caries.

  • PDF

Comparison of Non-Destructive Testing Images using $^{192}Ir$ and $^{75}Se$ with Computed Radiography System (Computed Radiography 시스템에 $^{192}Ir$$^{75}Se$ 동위원소를 적용하여 촬영한 비파괴검사 영상 비교)

  • Kang, Sang-Mook;Chol, Chang-Il;Lee, Seung-Kyu;Park, Sang-Ki;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2010
  • A computed Radiography (CR) system by use of reusable Image Plate (IP) offers a convenient and reliable way to replace a conventional film-screen system for NDT (non-destructive testing) field. The quality of a radiography to detect a defect of welded objects depends on the procedure embracing several factors such as measurement conditions, image plate type/class, radiation energy, radiation type, and source to image plate distance. Also, the ability of images to detect a flaw reduces with increasing object thickness. In the study, the properties of gamma ray source were summarized for NDT field and inspection images of CR image system manufactured by FUJI were acquired using $^{75}Se$ and $^{192}Ir$ with welded objects. We analyzed the gray scale of hole defect image by using XCAP image processing program and calculated the image contrast and SNR in definition. Also the sesitivities of image quality indicator(IQI) were calculated for hot and cooling tube image of $^{75}Se$ and $^{192}Ir$.

Determination of defect depth in industrial radiography imaging using MCNP code and SuperMC software

  • Khorshidi, Abdollah;Khosrowpour, Behzad;Hosseini, S. Hamed
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1597-1601
    • /
    • 2020
  • Background: Non-destructive evaluation of defects in metals or composites specimens is a regular method in radiographic imaging. The maintenance examination of metallic structures is a relatively difficult effort that requires robust techniques for use in industrial environments. Methods: In this research, iron plate, lead marker and tungsten defect with a 0.1 cm radius in spherical shape were separately simulated by MCNP code and SuperMC software. By 192Ir radiation source, two exposures were considered to determine the depth of the actual defined defect in the software. Also by the code, displacement shift of the defect were computed derived from changing the source location along the x- or y-axis. Results: The computed defect depth was identified 0.71 cm in comparison to the actual one with accuracy of 13%. Meanwhile, the defect position was recognized by disorder and reduction in obtained gamma flux. The flux amount along the x-axis was approximately 0.5E+11 units greater than the y-axis. Conclusion: This study provides a method for detecting the depth and position of the defect in a particular sample by combining code and software simulators.

FAST irradiations and initial post irradiation examinations - Part I

  • G. Beausoleil;L. Capriotti;B. Curnutt;R. Fielding;S. Hayes;D. Wachs
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4084-4094
    • /
    • 2022
  • The Advanced Fuels Campaign Fission Accelerated Steady-state Test (FAST) at Idaho National Laboratory (INL) completed its first irradiation cycle within the Advanced Test Reactor (ATR). The test focused on the irradiation of alloy fuel forms for use in sodium fast reactors. The first cycle of FAST testing was completed and four rodlets were removed for the initial post irradiation examination (PIE). The rodlet design and irradiation conditions were evaluated using Monte Carlo N-Particle (MCNP) for as-run power history and COMSOL for temperature analysis. These rodlets include a set of low burnups (~2.5 % fissions per initial metal atoms [%FIMA]), control rodlets, and a helium-bonded annular rodlet (4.7 %FIMA). Nondestructive PIE has been completed and includes visual inspection, neutron radiography and gamma scanning of the FAST capsules and rodlets. Radiography confirmed the integrity of the experiments, revealed that the annulus in the annular fuel was filled at a modest burnup (4.7 %FIMA), and indicated potential slumping of the cooler rodlets at lower burnup. Precision gamma scanning indicated mostly usual fission product behavior, except for cesium in the He-bonded annular fuel. Future destructive PIE will be necessary to fully interpret the effects of accelerated irradiation on U-Zr metallic fuel behavior.

방사성 동위원소를 이용한 문화재의 과학적보존 -고고유품 및 미술품의 조사감식법-

  • 김유선
    • Nuclear Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.229-240
    • /
    • 1972
  • Radioisotopes and their related techniques have recently been applied for scientific conservation works of cultural property and resulted many excellent findings or conservation data which could never be achieved by means of other techniques. Radiocarbon dating have widely been applied for dating the antique of organic origin, whereas the determination of radioactive contents in metal, ceramics, environmental soil, and classical objects could be able to afford many useful informations on the age, genuiness, and archeological significances as it had been produced. Trace quantity of contents of each antique have successfully been analyzed by means of radioactivation analysis or radio active tracer techniques, which could afford important technical data and results for tile conservation of each object. Radiography have also been applied for detecting the internal defects of metal objects and furthermore $\beta$-and ${\gamma}$-ray radiography were proved to be effective for such thin material as textile, painting, and fibres. In this article the detailed principle and procedures of each technique were presented so that the society could be able to make efforts to familiarize all concerns with these modern trends of the conservation techniques of cultural property.

  • PDF