• Title/Summary/Keyword: Gamma camera system

Search Result 92, Processing Time 0.025 seconds

Design of Gamma Camera with Diverging Collimator for Spatial Resolution Improvement (공간분해능 향상을 위한 확산형 콜리메이터 기반의 감마카메라 설계)

  • Lee, Seung-Jae;Jang, Yeongill;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.661-666
    • /
    • 2019
  • Diverging collimators is used to obtain reduced images of an object, or to detect a wide filed-of-view (FOV) using a small gamma camera. In the gamma camera using the diverging collimators, the block scintillator, and the pixel scintillator array, gamma rays are obliquely incident on the scintillator surface when the source is located the periphery of the FOV. Therefore, the spatial resolution is reduced because it is obliquely detected in depth direction. In this study, we designed a novel system to improve the spatial resolution in the periphery of the FOV. Using a tapered crystal array to configure the scintillation pixels to coincide with the angle of the collimator's hole allows imaging to one scintillation pixel location, even if events occur to different depths. That is, even if is detected at various points in the diagonal direction, the gamma rays interact with one crystal pixel, so resolution does not degrade. The resolution of the block scintillator and the tapered crystal array was compared and evaluated through Geant4 Application for Tomographic Emission (GATE) simulation. The spatial resolution of the obtained image was 4.05 mm in the block scintillator and 2.97 mm in the tapered crystal array. There was a 26.67% spatial resolution improvement in the tapered crystal array compared to the block scintillation.

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

  • Kim, Ho Chul;Kim, Hee-Joung;Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.776-780
    • /
    • 2017
  • To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

Improved characterization method for mobile phone camera and LCD display (모바일 폰 카메라와 LCD의 향상된 특성화 방법)

  • Jang, In-Su;Son, Chang-Hwan;Lee, Cheol-Hee;Song, Kun-Woen;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.65-73
    • /
    • 2008
  • The characterization process for the accurate color reproduction in mobile phone with camera and LCD is popular. The camera and LCD characterization, gamut mapping process is necessary to map the camera's input color stimulus, CIEXYZ value, into the LCD's output color stimulus. Each characterization is the process estimating the relation between input and output signals. In case of LCD, because of output device, the output color stimulus for the arbitrary input signal can be measured by spectro-radiometer However, in the camera, as the input device, the characterization is an inaccurate and needs the manual works in the process obtaining the output signal because the input signal can not be generated. Moreover, after gamut mapping process, the noise is increased because the optimized gamma tone curve of camera for the noise is distorted by the characterization. Thus, this paper proposed the system of obtaining the output signal of camera and the method of gamma correction for the noise. The camera's output signal is obtained by RGB values of patches from captured the color chart image. However, besides the illumination, the error for the location of the chart in the viewfinder is generated when many camera modules are captured the chart. The method of correcting the position to correct the error from manual works. The position of camera is estimated by captured image. This process and moving of camera is accomplished repeatedly, and the optimized position can be obtained. Moreover, the lightness curve of camera output is corrected partly to reduce the noise from the characterization process.

Development of Dual-mode Signal Processing Module for Multi-slit Prompt-gamma Camera (다중 슬릿 즉발감마선 카메라를 위한 이중모드 신호처리 모듈 개발)

  • Park, Jong Hoon;Lee, Han Rim;Kim, Sung Hun;Kim, Chan Hyeong;Shin, Dong Ho;Lee, Se Byeong;Jeong, Jonh Hwi
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.37-45
    • /
    • 2016
  • In proton therapy, in vivo proton beam range verification is very important to deliver conformal dose to the target volume and minimize unnecessary dose to normal tissue. For this purpose, a multi-slit prompt-gamma camera module made of 24 scintillation detectors and 24-channel signal processing system is under development. In the present study, we have developed and tested a dual-mode signal processing system, which can operate in the energy calibration mode and the fast data acquisition mode, to process the signals from the 24 scintillation detectors. As a result of performance test, using the energy calibration mode, we were able to perform energy calibration for the 24 scintillation detectors at the same time and determine the discrimination levels for the detector channels. Further, using the fast data acquisition mode, we were able to measure a prompt-gamma distribution induced by a 45 MeV proton beam. The measured prompt gamma distribution was found similar to the proton dose distribution at the distal fall-off region, and the estimated beam range was $17.13{\pm}0.76mm$, which is close to the proton beam range of 16.15 mm measured by an EBT film.

Development of simultaneous multi-channel data acquisition system for large-area Compton camera (LACC)

  • Junyoung Lee;Youngmo Ku;Sehoon Choi;Goeun Lee ;Taehyeon Eom ;Hyun Su Lee ;Jae Hyeon Kim ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3822-3830
    • /
    • 2023
  • The large-area Compton camera (LACC), featuring significantly high detection sensitivity, was developed for high-speed localization of gamma-ray sources. Due to the high gamma-ray interaction event rate induced by the high sensitivity, however, the multiplexer-based data acquisition system (DAQ) rapidly saturated, leading to deteriorated energy and imaging resolution at event rates higher than 4.7 × 103 s-1. In the present study, a new simultaneous multi-channel DAQ was developed to improve the energy and imaging resolution of the LACC even under high event rate conditions (104-106 s-1). The performance of the DAQ was evaluated with several point sources under different event rate conditions. The results indicated that the new DAQ offers significantly better performance than the existing DAQ over the entire energy and event rate ranges. Especially, the new DAQ showed high energy resolution under very high event rate conditions, i.e., 6.9% and 8.6% (for 662 keV) at 1.3 × 105 and 1.2 × 106 s-1, respectively. Furthermore, the new DAQ successfully acquired Compton images under those event rates, i.e., imaging resolutions of 13.8° and 19.3° at 8.7 × 104 and 106 s-1, which correspond to 1.8 and 73 μSv/hr or about 18 and 730 times the background level, respectively.

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera (이중 모드 컴프턴 카메라의 측면 흡수부 제작을 위한 신호처리회로 개발)

  • Seo, Hee;Park, Jin-Hyung;Park, Jong-Hoon;Kim, Young-Su;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.1
    • /
    • pp.16-24
    • /
    • 2012
  • In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.

Fusion of Gamma and Realistic Imaging (감마영상과 실사영상의 Fusion)

  • Kim, Yun-Cheol;Yu, Yeon-Uk;Seo, Young-Deok;Moon, Jong-Woon;Kim, Yeong-Seok;Won, Woo-Jae;Kim, Seok-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.78-82
    • /
    • 2010
  • Purpose: Recently, South Korea has seen a rapidly increased incidence of both breast and thyroid cancers. As a result, the I-131 scan and lymphoscintigraphy have been performed more frequently. Although this type of diagnostic imaging is prominent in that visualizes pathological conditions, which is similar to previous nuclear diagnostic imaging techniques, there is not much anatomical information obtained. Accordingly, it has been used in different ways to help find anatomical locations by transmission scan, however the results were unsatisfactory. Therefore, this study aims to realize an imaging technique which shows more anatomical information through the fusion of gamma and realistic imaging. Materials and Methods: We analyzed the data from patients who were examined by the lymphoscintigraphy and I-131 additional scan by Symbia Gamma camera (SIEMENS) in the nuclear medicine department of the National Cancer Center from April to July of 2009. First, we scanned the same location in patients by using a miniature camera (R-2000) in hyVISION. Afterwards, we scanned by gamma camera. The data we obtained was evaluated based on the scanning that measures an agreement of gamma and realistic imaging by the Gamma Ray Tool fusion program. Results: The amount of radiation technicians and patients were exposed was generated during the production process of flood source and applied transmission scan. During this time, the radiation exposure dose of technicians was an average of 14.1743 ${\mu}Sv$, while the radiation exposure dose of patients averaged 0.9037 ${\mu}Sv$. We also confirmed this to matching gamma and realistic markers in fusion imaging. Conclusion: Therefore, we found that we could provide imaging with more anatomical information to clinical doctors by fusion of system of gamma and realistic imaging. This has allowed us to perform an easier method in which to reduce the work process. In addition, we found that the radiation exposure can be reduced from the flood source. Eventually, we hope that this will be applicable in other nuclear medicine studies. Therefore, in order to respect the privacy of patients, this procedure will be performed only after the patient has agreed to the procedure after being given a detailed explanation about the process itself and its advantages.

  • PDF

Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4 (Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가)

  • Park, Jin Hyung;Seo, Hee;Kim, Seoung Hoon;Kim, Young Soo;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • A double-scattering type Compton camera which is appropriate to imaging a high-energy gamma source has been developed for nuclear material surveillance at Hanyang University. The double-scattering type Compton camera can provide high imaging resolution; however, it has disadvantage of relatively low imaging sensitivity than existing single-scattering type Compton camera. In this study, we introduce a novel concept of a dual-mode Compton camera which incorporates two different types of Compton camera, i.e., single- and double-scattering type. The dual-mode Compton camera can operate high-resolution mode and high-sensitivity mode in a single system. To maximize its performance, the geometrical configuration was optimized by using Geant4 Monte Carlo simulation toolkit. In terms of imaging sensitivity, high-sensitivity mode had higher sensitivity than high-resolution mode up to 100 times while high imaging resolution of the double-scattering Compton camera was maintained.

ROS-based control for a robot manipulator with a demonstration of the ball-on-plate task

  • Khan, Khasim A.;Konda, Revanth R.;Ryu, Ji-Chul
    • Advances in robotics research
    • /
    • v.2 no.2
    • /
    • pp.113-127
    • /
    • 2018
  • Robotics and automation are rapidly growing in the industries replacing human labor. The idea of robots replacing humans is positively influencing the business thereby increasing its scope of research. This paper discusses the development of an experimental platform controlled by a robotic arm through Robot Operating System (ROS). ROS is an open source platform over an existing operating system providing various types of robots with advanced capabilities from an operating system to low-level control. We aim in this work to control a 7-DOF manipulator arm (Robai Cyton Gamma 300) equipped with an external vision camera system through ROS and demonstrate the task of balancing a ball on a plate-type end effector. In order to perform feedback control of the balancing task, the ball is designed to be tracked using a camera (Sony PlayStation Eye) through a tracking algorithm written in C++ using OpenCV libraries. The joint actuators of the robot are servo motors (Dynamixel) and these motors are directly controlled through a low-level control algorithm. To simplify the control, the system is modeled such that the plate has two-axis linearized motion. The developed system along with the proposed approaches could be used for more complicated tasks requiring more number of joint control as well as for a testbed for students to learn ROS with control theories in robotics.