AI 기술의 발전으로 AI가 그린 그림과 인간이 직접 그린 그림을 식별하는 것이 어려워졌다. AI 기술을 통해 작품을 특정 화풍으로 그리는 것이 쉬워져 작품 도용과 평가 절하가 증가하고 있으며, AI가 인간과 유사하게 그림을 표현하는 경우 딥페이크 피싱과 같은 악용 사례도 늘어나고 있다. 따라서 본 논문에서는 AI 그림을 식별하기 위한 인공지능 모델 개발을 목표로 하고 있으며, 데이터셋을 구축하여 인공지능 기술을 활용한 알고리즘을 개발한다. YOLO Segmentation과 CNN을 활용하여 학습을 진행하고, 이를 통해 도용과 딥페이크 피해를 방지하는 프로세스를 제안한다.
본 논문은 팀 스포츠(team sports)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(group formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기의 대표 프레임 상에서 선수들과 공의 위치정보를 추출하고 그룹 포메이션 정보를 기초로 뉴럴네트워크의 BP(Back-propagation) 알고리즘을 사용하여 축구경기 하이라이트 장면의 자동추출을 위한 공격패턴 자동분류 기법을 개발 및 검증하였다. 또한, 실험에는 ‘98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72, 코너킥 39, 프리킥 52개의 총 297 개의 데이타를 추출하여 사용하였다. 실험결과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%. 코너킥 97.4%, 프리킥 75% 로서 매우 양호한 인식율을 보였다.
최근 스크린 클라이밍용 콘텐츠로 클라이밍 학습 프로그램과 스크린 클라이밍 게임이 등장하였으며, 특히 스크린 클라이밍 게임에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 스크린 클라이밍 콘텐츠 구현의 핵심 기술인 자세 인식 성능의 개선을 위하여 등반자의 신체영역을 기반으로 하는 스켈레톤 보정 방법을 제안한다. 스켈레톤 보정 과정은 비정상적인 스켈레톤 정보를 걸러내는 스켈레톤 프레임 안정화와 신체 영역을 관절부위별로 나누어 각 관절부위의 중점을 보정위치로 하는 신체영역 기반 스켈레톤 수정 과정으로 이루어진다. 이렇게 보정한 스켈레톤 정보는 클라이밍 콘텐츠에서 등반자의 자세가 이상적인 자세와 얼마나 유사한지 판단하는 데 사용될 수 있다.
레이더나 라이더 센서를 활용한 야구 경기 분석은 많은 비용이 요구된다. 본 논문에서는 중계 비디오에서 피치 샷과 타구 샷을 검출하고, 카메라의 움직임 기반 타구 궤적 생성 알고리즘을 제안한다. 제안하는 알고리즘은 객체 검출과 옵티컬 플로우 기반 피치 샷과 타구 샷 검출 이후, 프레임 간 변환 관계를 통해 프레임 내 타구 위치와 타구 궤적을 계산한다. 제안 방법은 KBO 중계 영상 시퀀스 3개에 대해 성능을 평가하였고 피치 샷과 타구 샷 검출 정확도와 검출률은 89-95[%] 이내의 성능을 보였으며, 평균 타구 위치 거리차이는 13.6[m], 방향 차이 7.5°, 파울 분류 정확도 98.6%의 성능을 보였다.
본 연구에서는 비행슈팅게임을 플레이하는 피험자의 긴장 또는 이완상태를 자동으로 인식하는 시스템을 제안한다. 기존 연구에서는 피험자에게 자극원을 제시하여 나타난 변화 값을 비교하기 때문에 자동으로 분류하는데 한계가 있었다. 본 연구에서는 피험자의 상태 변화를 자동으로 분류하여 인식할 수 있도록 비지도학습의 SOM을 적용한다. 긴장과 이완상태의 자동인식을 위한 SOM의 적용은 두 가지 단계로 구성된다. 첫 번째 단계는 ECG측정 및 분석으로 피험자에게 게임을 플레이하게 한 후 ECG를 측정하여 HRV 분석으로 특징벡터를 추출한다. 두 번째 단계는 SOM 학습 및 인식으로 특징이 추출된 심박신호의 입력벡터들을 SOM으로 학습하여 피험자의 긴장과 이완상태를 분류하여 인식 한다. 실험 결과는 세 가지로 나누어진다. 첫 번째, HRV의 주파수변화와 두 번째 심박신호의 SOM 학습결과를 나타냈다. 세 번째 단계는 SOM학습의 성능을 알기 위해서 매칭율을 분석했다. HRV의 주파수분석의 LF/HF 비율을 1.5 기준으로 SOM의 승자뉴런 거리와 매칭한 결과 평균 72%의 매칭율을 보였다.
감정은 인간의 상호 작용에서 중요한 역할을 하는 심리 생리학적 과정이다. 감성 컴퓨팅은 감정을 이해하고 조절할 수 있는 인간 인지 인공 지능의 개발하는데 중점을 둔다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환이 감정과 관련되어 있기 때문에 이러한 분야의 연구가 중요하다. 감정 인식에 대한 노력에도 불구하고, 비정상적인 EEG 신호로부터의 감정 검출은 여전히 높은 수준의 추상화를 요구하기에 정교한 학습 알고리즘이 필요하다. 이 논문에서는 EEG 기반으로 효율적인 감정 분류를 위해 LSTM을 위한 최적의 하이퍼파라미터를 파악하고자 다양한 실험을 수행하여 이를 분석한 결과를 제시하였다.
야구경기의 승패에 영향을 미치는 중요한 요인으로 간주되는 도루의 성공모형을 개발하기 위하여 2007년 한국프로야구 기록자료를 바탕으로 로지스틱 회귀모형들을 제안한다. 또한 한국프로야구의 도루성공과 실패에 대해 판별분석을 실시하고 분류 기준값을 결정하였으며, 판별분석 분류표를 이용해 로지스틱 회귀분석과 판별분석의 효율성을 비교한다. 전체적인 모형의 정확도는 로지스틱 회귀모형이 판별분석보다 더 좋은 것으로 나타났고, 연속형 자료를 범주형으로 변환한 자료에 대한 로지스틱 회귀모형도 유사한 효율성을 갖고있다.
In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.
Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.
본 논문은 Deep-learning 기반의 검출모델을 이용하여 연속적으로 입력되는 비디오 이미지 내의 해당 대상체를 의미별로 분류해야하는 문제에 대한 구현방법에 관한 논문이다. 기존의 대상체 검출모델은 Deep-learning 기반의 검출모델로서 유사한 대상체 분류를 위해서는 방대한 DATA의 수집과 기계학습과정을 통해서 가능했다. 대상체 검출모델의 구조개선을 통한 유사물체의 인식 및 분류를 위하여 기존의 검출모델을 이용한 분류 문제를 분석하고 처리구조를 변경하여 개선된 비전처리 모듈개발을 통해 이를 기존 인식모델에 접목함으로써 대상체에 대한 인식모델을 구현하였으며, 대상체의 분류를 위하여 검출모델의 구조변경을 통해 고유성과 유사성을 정의하고 이를 검출모델에 적용하였다. 실제 축구경기 영상을 이용하여 대상체의 특징점을 분류의 기준으로 설정하여 실시간으로 분류문제를 해결하여 인식모델의 활용성 검증을 통해 산업에서의 활용도를 확인하였다. 기존의 검출모델과 새롭게 구성한 인식모델을 활용하여 실시간 이미지를 색상과 강도의 구분이 용이한 HSV의 칼라공간으로 변환하는 비전기술을 이용하여 기존모델과 비교 검증하였고, 조도 및 노이즈 환경에서도 높은 검출률을 확보할 수 있는 실시간 환경의 인식모델 최적화를 위한 선행연구를 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.