• 제목/요약/키워드: Game classification

검색결과 157건 처리시간 0.041초

CNN 기반의 실사 이미지에 대한 게임 그래픽과 AI 그림 분류 모델 개발 (Development of Game Graphics and AI Picture Classification Model for Real-Life Images on CNN)

  • 박승보;조동휘;최서영;김은지
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.465-466
    • /
    • 2023
  • AI 기술의 발전으로 AI가 그린 그림과 인간이 직접 그린 그림을 식별하는 것이 어려워졌다. AI 기술을 통해 작품을 특정 화풍으로 그리는 것이 쉬워져 작품 도용과 평가 절하가 증가하고 있으며, AI가 인간과 유사하게 그림을 표현하는 경우 딥페이크 피싱과 같은 악용 사례도 늘어나고 있다. 따라서 본 논문에서는 AI 그림을 식별하기 위한 인공지능 모델 개발을 목표로 하고 있으며, 데이터셋을 구축하여 인공지능 기술을 활용한 알고리즘을 개발한다. YOLO Segmentation과 CNN을 활용하여 학습을 진행하고, 이를 통해 도용과 딥페이크 피해를 방지하는 프로세스를 제안한다.

  • PDF

뉴럴네트워크를 이용한 축구경기에 있어서의 공격패턴 자동분류 기법 (Automatic Classification Technique of Offence Pattern in Soccer Game using Neural Networks)

  • 김현숙;김광용;남성현;황종선;양영규
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권7호
    • /
    • pp.712-722
    • /
    • 2000
  • 본 논문은 팀 스포츠(team sports)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(group formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기의 대표 프레임 상에서 선수들과 공의 위치정보를 추출하고 그룹 포메이션 정보를 기초로 뉴럴네트워크의 BP(Back-propagation) 알고리즘을 사용하여 축구경기 하이라이트 장면의 자동추출을 위한 공격패턴 자동분류 기법을 개발 및 검증하였다. 또한, 실험에는 ‘98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72, 코너킥 39, 프리킥 52개의 총 297 개의 데이타를 추출하여 사용하였다. 실험결과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%. 코너킥 97.4%, 프리킥 75% 로서 매우 양호한 인식율을 보였다.

  • PDF

클라이머 자세인식을 위한 신체영역 기반 스켈레톤 보정 (Skeletal Joint Correction Method based on Body Area Information for Climber Posture Recognition)

  • 정다니엘;고일주
    • 한국게임학회 논문지
    • /
    • 제17권5호
    • /
    • pp.133-142
    • /
    • 2017
  • 최근 스크린 클라이밍용 콘텐츠로 클라이밍 학습 프로그램과 스크린 클라이밍 게임이 등장하였으며, 특히 스크린 클라이밍 게임에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 스크린 클라이밍 콘텐츠 구현의 핵심 기술인 자세 인식 성능의 개선을 위하여 등반자의 신체영역을 기반으로 하는 스켈레톤 보정 방법을 제안한다. 스켈레톤 보정 과정은 비정상적인 스켈레톤 정보를 걸러내는 스켈레톤 프레임 안정화와 신체 영역을 관절부위별로 나누어 각 관절부위의 중점을 보정위치로 하는 신체영역 기반 스켈레톤 수정 과정으로 이루어진다. 이렇게 보정한 스켈레톤 정보는 클라이밍 콘텐츠에서 등반자의 자세가 이상적인 자세와 얼마나 유사한지 판단하는 데 사용될 수 있다.

중계 영상을 활용한 야구 경기 분석 방법 (Baseball Game Analysis Method Using Broadcast Video)

  • 손종웅;이명진
    • 방송공학회논문지
    • /
    • 제25권4호
    • /
    • pp.576-586
    • /
    • 2020
  • 레이더나 라이더 센서를 활용한 야구 경기 분석은 많은 비용이 요구된다. 본 논문에서는 중계 비디오에서 피치 샷과 타구 샷을 검출하고, 카메라의 움직임 기반 타구 궤적 생성 알고리즘을 제안한다. 제안하는 알고리즘은 객체 검출과 옵티컬 플로우 기반 피치 샷과 타구 샷 검출 이후, 프레임 간 변환 관계를 통해 프레임 내 타구 위치와 타구 궤적을 계산한다. 제안 방법은 KBO 중계 영상 시퀀스 3개에 대해 성능을 평가하였고 피치 샷과 타구 샷 검출 정확도와 검출률은 89-95[%] 이내의 성능을 보였으며, 평균 타구 위치 거리차이는 13.6[m], 방향 차이 7.5°, 파울 분류 정확도 98.6%의 성능을 보였다.

긴장과 이완상태의 자동인식을 위한 SOM의 적용 (Applying of SOM for Automatic Recognition of Tension and Relaxation)

  • 정찬순;함준석;고일주;장대식
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.65-74
    • /
    • 2010
  • 본 연구에서는 비행슈팅게임을 플레이하는 피험자의 긴장 또는 이완상태를 자동으로 인식하는 시스템을 제안한다. 기존 연구에서는 피험자에게 자극원을 제시하여 나타난 변화 값을 비교하기 때문에 자동으로 분류하는데 한계가 있었다. 본 연구에서는 피험자의 상태 변화를 자동으로 분류하여 인식할 수 있도록 비지도학습의 SOM을 적용한다. 긴장과 이완상태의 자동인식을 위한 SOM의 적용은 두 가지 단계로 구성된다. 첫 번째 단계는 ECG측정 및 분석으로 피험자에게 게임을 플레이하게 한 후 ECG를 측정하여 HRV 분석으로 특징벡터를 추출한다. 두 번째 단계는 SOM 학습 및 인식으로 특징이 추출된 심박신호의 입력벡터들을 SOM으로 학습하여 피험자의 긴장과 이완상태를 분류하여 인식 한다. 실험 결과는 세 가지로 나누어진다. 첫 번째, HRV의 주파수변화와 두 번째 심박신호의 SOM 학습결과를 나타냈다. 세 번째 단계는 SOM학습의 성능을 알기 위해서 매칭율을 분석했다. HRV의 주파수분석의 LF/HF 비율을 1.5 기준으로 SOM의 승자뉴런 거리와 매칭한 결과 평균 72%의 매칭율을 보였다.

BCI에서 EEG 기반 효율적인 감정 분류를 위한 LSTM 하이퍼파라미터 최적화 (LSTM Hyperparameter Optimization for an EEG-Based Efficient Emotion Classification in BCI)

  • ;;임창균
    • 한국전자통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1171-1180
    • /
    • 2019
  • 감정은 인간의 상호 작용에서 중요한 역할을 하는 심리 생리학적 과정이다. 감성 컴퓨팅은 감정을 이해하고 조절할 수 있는 인간 인지 인공 지능의 개발하는데 중점을 둔다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환이 감정과 관련되어 있기 때문에 이러한 분야의 연구가 중요하다. 감정 인식에 대한 노력에도 불구하고, 비정상적인 EEG 신호로부터의 감정 검출은 여전히 높은 수준의 추상화를 요구하기에 정교한 학습 알고리즘이 필요하다. 이 논문에서는 EEG 기반으로 효율적인 감정 분류를 위해 LSTM을 위한 최적의 하이퍼파라미터를 파악하고자 다양한 실험을 수행하여 이를 분석한 결과를 제시하였다.

2007년 한국프로야구에서 도루성공모형 (Steal Success Model for 2007 Korean Professional Baseball Games)

  • 홍종선;최정민
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.455-468
    • /
    • 2008
  • 야구경기의 승패에 영향을 미치는 중요한 요인으로 간주되는 도루의 성공모형을 개발하기 위하여 2007년 한국프로야구 기록자료를 바탕으로 로지스틱 회귀모형들을 제안한다. 또한 한국프로야구의 도루성공과 실패에 대해 판별분석을 실시하고 분류 기준값을 결정하였으며, 판별분석 분류표를 이용해 로지스틱 회귀분석과 판별분석의 효율성을 비교한다. 전체적인 모형의 정확도는 로지스틱 회귀모형이 판별분석보다 더 좋은 것으로 나타났고, 연속형 자료를 범주형으로 변환한 자료에 대한 로지스틱 회귀모형도 유사한 효율성을 갖고있다.

비지도학습 데이터의 정확성 측정을 위한 클러스터별 분류 평가 예측 모델에 대한 연구 (A Study on Classification Evaluation Prediction Model by Cluster for Accuracy Measurement of Unsupervised Learning Data)

  • 정세훈;김종찬;김치용;유강수;심춘보
    • 한국멀티미디어학회논문지
    • /
    • 제21권7호
    • /
    • pp.779-786
    • /
    • 2018
  • In this paper, we are applied a nerve network to allow for the reflection of data learning methods in their overall forms by using cluster data rather than data learning by the stages and then selected a nerve network model and analyzed its variables through learning by the cluster. The CkLR algorithm was proposed to analyze the reaction variables of clustering outcomes through an approach to the initialization of K-means clustering and build a model to assess the prediction rate of clustering and the accuracy rate of prediction in case of new data inputs. The performance evaluation results show that the accuracy rate of test data by the class was over 92%, which was the mean accuracy rate of the entire test data, thus confirming the advantages of a specialized structure found in the proposed learning nerve network by the class.

Comparative Evaluation of Machine Learning Models for Predicting Soccer Injury Types

  • Davronbek Malikov;Jaeho Kim;Jung Kyu Park
    • 한국산업융합학회 논문집
    • /
    • 제27권2_1호
    • /
    • pp.257-268
    • /
    • 2024
  • Soccer is type of sport that carries a high risk of injury. Injury is not only cause in the unlucky soccer carrier and also team performance as well as financial effects can be worse since soccer is a team-based game. The duration of recovery from a soccer injury typically relies on its type and severity. Therefore, we conduct this research in order to predict the probability of players injury type using machine learning technologies in this paper. Furthermore, we compare different machine learning models to find the best fit model. This paper utilizes various supervised classification machine learning models, including Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Naive Bayes. Moreover, based on our finding the KNN and Decision models achieved the highest accuracy rates at 70%, surpassing other models. The Random Forest model followed closely with an accuracy score of 62%. Among the evaluated models, the Naive Bayes model demonstrated the lowest accuracy at 56%. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history. We gathered information about 54 professional soccer players who are playing in the top five European leagues based on their career history.

딥러닝 모델을 이용한 비전이미지 내의 대상체 분류에 관한 연구 (A Study on The Classification of Target-objects with The Deep-learning Model in The Vision-images)

  • 조영준;김종원
    • 한국산학기술학회논문지
    • /
    • 제22권2호
    • /
    • pp.20-25
    • /
    • 2021
  • 본 논문은 Deep-learning 기반의 검출모델을 이용하여 연속적으로 입력되는 비디오 이미지 내의 해당 대상체를 의미별로 분류해야하는 문제에 대한 구현방법에 관한 논문이다. 기존의 대상체 검출모델은 Deep-learning 기반의 검출모델로서 유사한 대상체 분류를 위해서는 방대한 DATA의 수집과 기계학습과정을 통해서 가능했다. 대상체 검출모델의 구조개선을 통한 유사물체의 인식 및 분류를 위하여 기존의 검출모델을 이용한 분류 문제를 분석하고 처리구조를 변경하여 개선된 비전처리 모듈개발을 통해 이를 기존 인식모델에 접목함으로써 대상체에 대한 인식모델을 구현하였으며, 대상체의 분류를 위하여 검출모델의 구조변경을 통해 고유성과 유사성을 정의하고 이를 검출모델에 적용하였다. 실제 축구경기 영상을 이용하여 대상체의 특징점을 분류의 기준으로 설정하여 실시간으로 분류문제를 해결하여 인식모델의 활용성 검증을 통해 산업에서의 활용도를 확인하였다. 기존의 검출모델과 새롭게 구성한 인식모델을 활용하여 실시간 이미지를 색상과 강도의 구분이 용이한 HSV의 칼라공간으로 변환하는 비전기술을 이용하여 기존모델과 비교 검증하였고, 조도 및 노이즈 환경에서도 높은 검출률을 확보할 수 있는 실시간 환경의 인식모델 최적화를 위한 선행연구를 수행하였다.