• Title/Summary/Keyword: Game Development Project

Search Result 52, Processing Time 0.021 seconds

Innovative Technologies in Higher School Practice

  • Popovych, Oksana;Makhynia, Nataliia;Pavlyuk, Bohdan;Vytrykhovska, Oksana;Miroshnichenko, Valentina;Veremijenko, Vadym;Horvat, Marianna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.248-254
    • /
    • 2022
  • Educational innovations are first created, improved or applied educational, didactic, educative, and managerial systems and their components that significantly improve the results of educational activities. The development of pedagogical technology in the global educational space is conventionally divided into three stages. The role of innovative technologies in Higher School practice is substantiated. Factors of effectiveness of the educational process are highlighted. Technology is defined as a phenomenon and its importance is emphasized, it is indicated that it is a component of human history, a form of expression of intelligence focused on solving important problems of being, a synthesis of the mind and human abilities. The most frequently used technologies in practice are classified. Among the priority educational innovations in higher education institutions, the following are highlighted. Introduction of modular training and a rating system for knowledge control (credit-modular system) into the educational process; distance learning system; computerization of libraries using electronic catalog programs and the creation of a fund of electronic educational and methodological materials; electronic system for managing the activities of an educational institution and the educational process. In the educational process, various innovative pedagogical methods are successfully used, the basis of which is interactivity and maximum proximity to the real professional activity of the future specialist. There are simulation technologies (game and discussion forms of organization); technology "case method" (maximum proximity to reality); video training methodology (maximum proximity to reality); computer modeling; interactive technologies; technologies of collective and group training; situational modeling technologies; technologies for working out discussion issues; project technology; Information Technologies; technologies of differentiated training; text-centric training technology and others.

Documentation of Intangible Cultural Heritage Using Motion Capture Technology Focusing on the documentation of Seungmu, Salpuri and Taepyeongmu (부록 3. 모션캡쳐를 이용한 무형문화재의 기록작성 - 국가지정 중요무형문화재 승무·살풀이·태평무를 중심으로 -)

  • Park, Weonmo;Go, Jungil;Kim, Yongsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.351-378
    • /
    • 2006
  • With the development of media, the methods for the documentation of intangible cultural heritage have been also developed and diversified. As well as the previous analogue ways of documentation, the have been recently applying new multi-media technologies focusing on digital pictures, sound sources, movies, etc. Among the new technologies, the documentation of intangible cultural heritage using the method of 'Motion Capture' has proved itself prominent especially in the fields that require three-dimensional documentation such as dances and performances. Motion Capture refers to the documentation technology which records the signals of the time varing positions derived from the sensors equipped on the surface of an object. It converts the signals from the sensors into digital data which can be plotted as points on the virtual coordinates of the computer and records the movement of the points during a certain period of time, as the object moves. It produces scientific data for the preservation of intangible cultural heritage, by displaying digital data which represents the virtual motion of a holder of an intangible cultural heritage. National Research Institute of Cultural Properties (NRICP) has been working on for the development of new documentation method for the Important Intangible Cultural Heritage designated by Korean government. This is to be done using 'motion capture' equipments which are also widely used for the computer graphics in movie or game industries. This project is designed to apply the motion capture technology for 3 years- from 2005 to 2007 - for 11 performances from 7 traditional dances of which body gestures have considerable values among the Important Intangible Cultural Heritage performances. This is to be supported by lottery funds. In 2005, the first year of the project, accumulated were data of single dances, such as Seungmu (monk's dance), Salpuri(a solo dance for spiritual cleansing dance), Taepyeongmu (dance of peace), which are relatively easy in terms of performing skills. In 2006, group dances, such as Jinju Geommu (Jinju sword dance), Seungjeonmu (dance for victory), Cheoyongmu (dance of Lord Cheoyong), etc., will be documented. In the last year of the project, 2007, education programme for comparative studies, analysis and transmission of intangible cultural heritage and three-dimensional contents for public service will be devised, based on the accumulated data, as well as the documentation of Hakyeonhwadae Habseolmu (crane dance combined with the lotus blossom dance). By describing the processes and results of motion capture documentation of Salpuri dance (Lee Mae-bang), Taepyeongmu (Kang seon-young) and Seungmu (Lee Mae-bang, Lee Ae-ju and Jung Jae-man) conducted in 2005, this report introduces a new approach for the documentation of intangible cultural heritage. During the first year of the project, two questions have been raised. First, how can we capture motions of a holder (dancer) without cutoffs during quite a long performance? After many times of tests, the motion capture system proved itself stable with continuous results. Second, how can we reproduce the accurate motion without the re-targeting process? The project re-created the most accurate motion of the dancer's gestures, applying the new technology to drew out the shape of the dancers's body digital data before the motion capture process for the first time in Korea. The accurate three-dimensional body models for four holders obtained by the body scanning enhanced the accuracy of the motion capture of the dance.