• Title/Summary/Keyword: Game Classification

Search Result 157, Processing Time 0.02 seconds

User Behavior Classification for Contents Configuration of Life-logging Application (라이프로깅 애플리케이션 콘텐츠 구성을 위한 사용자 행태 분류)

  • Kwon, Jieun;Kwak, Sojung;Lim, Yoon Ah;Whang, Min Cheol
    • Science of Emotion and Sensibility
    • /
    • v.19 no.4
    • /
    • pp.13-20
    • /
    • 2016
  • Recently, life-logging service which has expanded to measure and record the daily life of the users and to share with others are increasing. In particular, as life-logging services based on the application has become popular with the development of wearable-devices and smart-phones, the contents of this service are produced by user behavior and are provided in infographic menu form. The purpose of this paper is to extract user behavior and classify for making contents items of life-logging service. For this paper, the first of all, we discuss the definition and characteristics of life-logging and research the contents based on user behavior related to life-logging by the publications including thesis, articles, and books. Secondly, we extract and classify the user behavior to build the contents for life-logging service. We gather users' action words from publication materials, researches, and contents of existing life-logging service. And then collected words are analyzed by FGI (Focus Group Interview) and survey. As the result, 39 words which suit for contents of life-logging service are extracted by verify suitability. Finally, the extracted 39 words are classified for 19 categories -'Eat', 'Keep house', 'Diet', 'Travel', 'Work out', 'Transit', 'Shoot', 'Meet', 'Feel', 'Talk', 'Care for', 'Drive', 'Listen', 'Go online', 'Sleep', 'Go', 'Work', 'Learn', 'Watch' - which are suggested by the surveys, statistical analysis, and FGI. We will discuss the role and limitations of this results to build contents configuration based on life-logging application in this study.

Kinematic Analysis of Acopian in Vault (도마종목 Kasamatsu계의 Akopian 기술동작 분석)

  • Lee, Soon-Ho;Park, Jong-Hoon;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • The study were to assess technical factors between the high score group and the low score group, from the subjects of 16 male national gymnasts, and to analyze the kinematical characteristic and main technical cause on technique of Akopian's 3D motion analysis of the male vaulting game in 2001 classification championship. The result of this study is this. There were not so much difference between the two groups in term; of the time of board contact, pre-flight, and total performance, but it takes shorter time when the players who are in the high point group take down the board, and they take long time for post-flight(p<.01). The high point group has a longer perpendicular distance in the moment of horse taking off, 0.05m on the average, than the low point group. The high point group shows 0.16m higher on the average than the other group in term; of the height of post-flight(p<.01). In the phase of board contact, the range of horizontal velocity at board take on were $7.66m/s{\sim}7.33m/s$, but there weren't significantly statistic differences between two groups. The hight score group were 0.68m/s faster than the low point group at the horizontal velocity at board take off event(<.05). About the average horizontal velocity of deceleration, AG1(-1.95m/s) reduces the speed more than AG2(-1.57m/s)(p<.05). And the hight score group were 0.37m/s faster than the low point group at the vertical velocity at horse take off event(<.05). When board taking off, the projectile angle of com were $38.7{\sim}37.8degree$ on the average. the comparative groups show almost same results. When horse taking off, the HPVy of the high point group were 37.6 degree which were a little higher than the low point group. The angular velocities of the players who takes on the horse with a right hand and then takes off with a left hand in the high point group were 14.97rad/sec, 10.82rad/sec in the low point group. However, the angular velocity of the players who takes on the horse with a left hand and then takes off on a right hand with the high point group were 14.97rad/sec, 15.56rad/sec in the low point group.

Automatic Classification Technique of Offence Patterns using Neural Networks in Soccer Game (뉴럴네트워크를 이용한 축구경기 공격패턴 자동분류에 관한 연구)

  • Kim, Hyun-Sook;Yoon, Ho-Sub;Hwang, Chong-Sun;Yang, Young-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.727-730
    • /
    • 2001
  • 멀티미디어 환경의 급속한 발전에 의해 영상처리 기술은 인간의 인체와 관련하여 얼굴인식, 제스처 인식에 관한 응용과 더불어 스포츠 관련분야로 깊숙히 정착하고 있다. 그러나 입력영상으로부터 움직이고 있는 선수들의 동작을 추출 및 추적하는 일은 컴퓨터비전 연구의 난 문제 중의 하나로 알려져 있다. 이러한 축구경기의 TV 중계에 있어서 하이라이트 장면의 자동추출(자동색인)은 그 경기의 가장 집약적인 표현이며, 축구경기 전체를 한 눈에 파악할 수 있도록 해주는 요약(summary)이자 intensive actions이고 경기의 진수이다. 따라서 축구경기와 같이 비교적 기 시간(대체로 1시간 30분) 동안 다수의 선수(양 팀 합해서 22명)들이 서로 복잡하게 뒤얽히면서 진행하는 경기의 하이라이트 장면을 효과적으로 포착하여 표현해 줄 수 있다면 TV를 통해서 경기를 관람하는 시청자들에게는 경기의 진행상황을 한 눈에 효과적으로 파악할 수 있게 해주어 흥미진진한 경기관람을 할 수 있게 해주고, 경기의 진행자들(감독, 코치, 선수 등)에게는 고차원적이고 과학적인 정보를 효과적으로 제공함으로써 한층 진보된 경기기법을 개발하고 과학적인 경기전략을 세울 수 있게 해준다. 본 논문은 이상과 같이 팀 스포츠(Team Spots)의 일종인 축구경기 하이라이트 장면의 자동색인을 위해 뉴럴네트워크 기법을 이용하여 그룹 포메이션(Group Formation) 중의 공격패턴 자동분류 기법을 개발하고 이를 검증하였다. 본 연구에서는 축구경기장 내의 빈번하게 변화하는 장면들을 자동으로 분할하여 대표 프레임을 선정하고, 대표 프레임 상에서 선수들의 위치정보와 공의 위치정보 등을 기초로 하여 경기 중에 이루어지는 선수들의 그룹 포메이션을 추적하여 그룹행동(group behavior)을 분석하고, 뉴럴네트워크의 BP(Back-Propagation) 알고리즘을 사용하여 축구경기 공격패턴을 자동으로 인식 및 분류함으로써 축구경기 하이라이트 장면의 자동추출을 위한 기반을 마련하였다. 본 연구의 실험에는 '98 프랑스 월드컵 축구경기의 다양한 공격패턴에 대한 비디오 영상에서 각각 좌측공격 60개, 우측공격 74개, 중앙공격 72개, 코너킥 39개, 프리킥 52개의 총 297개의 데이터를 추출하여 사용하였다. 실험과는 좌측공격 91.7%, 우측공격 100%, 중앙공격 87.5%, 코너킥 97.4%, 프리킥 75%로서 매우 양호한 인식율을 보였다.

  • PDF

Innovative Technologies in Higher School Practice

  • Popovych, Oksana;Makhynia, Nataliia;Pavlyuk, Bohdan;Vytrykhovska, Oksana;Miroshnichenko, Valentina;Veremijenko, Vadym;Horvat, Marianna
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.248-254
    • /
    • 2022
  • Educational innovations are first created, improved or applied educational, didactic, educative, and managerial systems and their components that significantly improve the results of educational activities. The development of pedagogical technology in the global educational space is conventionally divided into three stages. The role of innovative technologies in Higher School practice is substantiated. Factors of effectiveness of the educational process are highlighted. Technology is defined as a phenomenon and its importance is emphasized, it is indicated that it is a component of human history, a form of expression of intelligence focused on solving important problems of being, a synthesis of the mind and human abilities. The most frequently used technologies in practice are classified. Among the priority educational innovations in higher education institutions, the following are highlighted. Introduction of modular training and a rating system for knowledge control (credit-modular system) into the educational process; distance learning system; computerization of libraries using electronic catalog programs and the creation of a fund of electronic educational and methodological materials; electronic system for managing the activities of an educational institution and the educational process. In the educational process, various innovative pedagogical methods are successfully used, the basis of which is interactivity and maximum proximity to the real professional activity of the future specialist. There are simulation technologies (game and discussion forms of organization); technology "case method" (maximum proximity to reality); video training methodology (maximum proximity to reality); computer modeling; interactive technologies; technologies of collective and group training; situational modeling technologies; technologies for working out discussion issues; project technology; Information Technologies; technologies of differentiated training; text-centric training technology and others.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

A Study on the Management of Manhwa Contents Records and Archives (만화기록 관리 방안 연구)

  • Kim, Seon Mi;Kim, Ik Han
    • The Korean Journal of Archival Studies
    • /
    • no.28
    • /
    • pp.35-81
    • /
    • 2011
  • Manhwa is a mass media (to expose all faces of an era such as politics, society, cultures, etc with the methodology of irony, parody, etc). Since the Manhwa records is primary culture infrastructure, it can create the high value-added industry by connecting with fancy, character, game, movie, drama, theme park, advertising business. However, due to lack of active and systematic aquisition system, as precious Manhwa manuscript is being lost every year and the contents hard to preserve such as Manhwa content in the form of electronic records are increasing, the countermeasure of Manhwa contents management is needed desperately. In this study, based on these perceptions, the need of Manhwa records management is examined, and the characteristics and the components of Manhwa records were analyzed. And at the same time, the functions of record management process reflecting the characteristics of Manhwa records were extracted by analyzing various cases of overseas Cartoon Archives. And then, the framework of record-keeping regime was segmented into each of acquisition management service areas and the general Manhwa records archiving strategy, which manages the Manhwa contents records, was established and suggested. The acquired Manhwa content records will secure the context among records and warrant the preservation of records and provide diverse access points by reflecting multi classification and multi-level descriptive element. The Manhwa records completed the intellectual arrangement will be preserved after the conservation in an environment equipped with preservation facilities or preserved using digital format in case of electronic records or when there is potential risk of damaging the records. Since the purpose of the Manhwa records is to use them, the information may be provided to diverse classes of users through the exhibition, the distribution, and the development of archival information content. Since the term of "Manhwa records" is unfamiliar yet and almost no study has been conducted in the perspective of records management, it will be the limit of this study only presenting acquisition strategy, management and service strategy of Manhwa contents and suggesting simple examples. However, if Manhwa records management strategy are possibly introduced practically to Manhwa manuscript repositories through archival approach, it will allow systematic acquisition, preservation, arrangement of Manhwa records and will contribute greatly to form a foundation for future Korean culture contents management.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.