• Title/Summary/Keyword: Galvanized steel pipe

Search Result 36, Processing Time 0.022 seconds

Influence of Pipe Materials on Corrosion and Bacteria Regrowth in A Model Home Plumbing System (급수관에서 관재에 따른 부식특성과 미생물 재성장 고찰)

  • Kim, Tae-Hyun;Lee, Yoon-Jin;Lee, Hwan;Lee, Cheol-Hyo;Ahn, Kyo-Chul;Lee, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.121-128
    • /
    • 2007
  • This study performed in order to evaluate the effects of pipe materials on corrosion and bacteria regrowth using a laboratory scale batch test. Two varieties of feed water with different microbial conditions were selected: tap water, surface river water (Han River water), and five pipe materials; carbon steel, copper, galvanized iron, stainless steel, and PVC, Carbon steel and galvanized iron pipes showed higher corrosion rates than other materials. In terms of attached bacterial growth, pipes with PVC and stainless steel showed higher bacteria concentration compared to other materials. Pseudomonas vesicularis was the predominant bacteria found on biofilm. The behavior of bacterial growth in the pipes was observed using a scanning electron microscope.

Application of corrosion inhibitors to water distribution systems

  • Park, Yong-Il;Woo, Dal-Sik;Cho, Young-Tai;Jo, Kwan-Hyung;Nam, Sang-Ho
    • Journal of Environmental Science International
    • /
    • v.11 no.5
    • /
    • pp.411-418
    • /
    • 2002
  • The current study evaluated the disinfection efficiency of free chlorine and chloramine for microorganisms on various pipe materials, such as copper, galvanized steel, carbon steel, and stainless steel. In addition, the effect of internal pipe corrosion and corrosion inhibitors on the bactericidal efficiency was evaluated using a simulated loop. For disinfection with a phosphate corrosion inhibitor, chloramination was found to be more effective than chlorination due to its persistence. Free chlorine disinfection was optimized with a high phosphoric acid concentration, while chloramine disinfection was optimized with a high phosphoric acid or low polyphosphate concentration. In simulated copper and galvanized steel loop tests, chloramination with phosphoric acid was demonstrated to be more effective.

Estimation of Durability of corrugated Steel Pipes Made of Hot-Dip Galvanized Sheet Steels (용융아연 도금강판으로 제조된 파형강관의 내구수명예측)

  • 김종상
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.6
    • /
    • pp.347-358
    • /
    • 1994
  • Estimation of durability for corrugated steel pipe(CSP) has been evaluated by using several analytical methods. This study, using a plain hot-dip galvanized CSP as the base line, addresses additional coatings such as polymers sand bituminous coatings that may be used to achieve a desired design life of at least 50years. The behavior of both the soil side and the effluent side of the pipe have been studied. It is estimated that CSP generally provides outstanding dura-bility with regard to soil side effects, and that virtually any required service life can be attained by selecting appropri-ate coatingss and/or thickness of steel substrate. This study is limited to storm drainage systemss carrying naturally oc-curring surface water only. The recommendation in this report do not apply to sanitary or industrial waste sewers or other conduits used to carry corrosive effluents.

  • PDF

Environments Pollution Caused by Welding Rod in the Process of Pipe Working (설비배관에서 용접봉에 따른 환경오염)

  • Yoon, Young-Mook;Lee, Woo-Ram;Lee, Chul-Ku;Kim, Joo-Han
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.300-306
    • /
    • 2009
  • Welding technology is applicable in many kinds of fields, with the help of its advantages such as easy operational procedure and structural simplification. However, in the process of welding, hazardous materials and fumes cause huge fire broke-outs, explosions, and health-conscious problems. Also, as heavy metals in fumes have a harmful effect on the environment, recently, this has emerged as a urgent social issue. This study has been aimed at the recommendation of the most environment-friendly, among materials currently used in plumbing welding, and it has been done at the result of the analysis of amount, ingredient, and size in collected fumes created in the experiment of welding five rods to galvanized steel pipes and steel pipe ones. At the test result, due to the effect of Zn-coating, galvanized steel pipes, when welded to rods, created more fumes than steel pipe ones. In the mean time, when it comes to welding rods, among five, WR-03 produced fumes the least. Therefore, a combination of the test results clearly indicates that the case of welding WR-03 to cast-iron pipes turned out to be the most environment-friendly.

  • PDF

Corrosion Resistance of Zn and Cu Coated Steel Pipes as a Substitute for Cu Pipe in an Air Conditioner System

  • Shin, Jae-Gyeong;Park, Chan-Jin;Hong, Sung-Kil
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.40-43
    • /
    • 2009
  • We investigated the corrosion resistance of Zn and Cu coated steel pipes as a substitute for Cu pipe in an air-conditioner system. In addition, the galvanic corrosion tendency between two dissimilar metal parts was studied. The corrosion resistance of the Cu electroplated steel was similar to that of Cu, while the corrosion rate of the Zn electro- galvanized and the galvalume (Zn-55 % Al) coated steels was much higher and not suitable for Cu substitute in artificial sea water and acidic rain environments. Furthermore, the galvanic difference between Cu electroplated steel and Cu was so small that the Cu coated steel pipe can be used as a substitute for Cu pipe in an air-conditioner system.

Appropriateness Evaluation of Rural House Collapse Prepare Disaster Shelter Member - Focusing on the Numerical Analysis - (농촌 주택붕괴 대비 방재쉘터의 부재 적정성 평가 - 수치해석을 중심으로 -)

  • Oh, Hyeonmun;Kim, Jungmeyon;Lee, Eungbeom;Lim, Changsu;Kim, Yongseong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.51-60
    • /
    • 2017
  • This research is a basic study to minimize the risk of disaster (earthquakes and landslides) for rural residential houses. In this study, three-dimensional numerical analysis was performed by varying the diameter (D), thickness (T) and the spacing of longitudinal members (C.T.C) of duralumin and galvanized steel pipe as the materials of main members in order to carry out the analysis of the dimension and the applied load of shelter for disaster prevention, and to evaluate the eligibility of members that can satisfy safety and usability. From the evaluation results of the member eligibility by the above numerical analysis, it was found that duralumin has a great influence on the member diameter (D) and thickness (T), and in the case of galvanized steel pipe, its spacing of longitudinal members has a huge amount of influence over the member force, so it is considered that the duralumin and galvanized steel pipe materials can be used as materials for the main members of disaster prevention shelters in terms of safety and usability.

Effect of Dissolved Oxygen (DO) on Internal Corrosion of Water Pipes

  • Jung, Hae-Ryong;Kim, Un-Ji;Seo, Gyu-Tae;Lee, Hyun-Dong;Lee, Chun-Sik
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.195-199
    • /
    • 2009
  • A series of laboratory-scale corrosion experiments was carried out to observe the effect of dissolved oxygen (DO) in the presence of other water quality parameters, such as hardness, Cl-, and pH using various pipe materials. In addition, a simulated loop system was installed at a water treatment plant for pilot-scale experiment. Laboratory-scale experiment showed that corrosion rates for galvanized steel pipe (GSP), carbon steel pipe (CSP), and ductile cast iron pipe (DCIP) were decreased to 72%, 75%, and 91% by reducing DO concentration from 9${\pm}$0.5 mg/L to 2${\pm}$0.5 mg/L. From the pilot scale experiment, it was further identified that the average ionization rate of zinc in GSP decreased from 0.00533 to 0.00078 mg/$cm^2$/d by controlling the concentration of DO. The reduction of average ionization rate for copper pipe (CP) and stainless steel pipe (SSP) were 71.4% for Cu and 63.5% for Fe, respectively. From this study, it was concluded that DO could be used as a major parameter in controlling the corrosion of water pipes.

Failure Analysis of Welded Pipe in Water Supplies for Apartment

  • Lee, Jong Kwon;Hong, Kyung Tae;Hwang, Woon Seok;Koh, Yong Tae;Park, Yong Soo
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.67-71
    • /
    • 2004
  • Galvanized Steel pipes have been widely used in industries and apartments, Unexpected early leakage has been found in an apartment. Tunneling corrosion or penetration was found in the water supply pipes. The chemical compositions of the pipes and properties of coating layer were evaluated. The pipes met the specification of KS D 3507. The cause of early failure was analyzed through the examination of macrostructures and microstructures, It was found that the pipes were failed by grooving corrosion, which resulted from galvanic corrosion of weld bead and matrix.

Influence of Pipe Materials and VBNC Cells on Culturable Bacteria in a Chlorinated Drinking Water Model System

  • Lee, Dong-Geun;Park, Seong-Joo;Kim, Sang-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1558-1562
    • /
    • 2007
  • To elucidate the influence of pipe materials on the VBNC (viable but nonculturable) state and bacterial numbers in drinking water, biofilm and effluent from stainless steel, galvanized iron, and polyvinyl chloride pipe wafers were analyzed. Although no HPC (heterotrophic plate count) was detected in the chlorinated influent of the model system, a DVC (direct viable count) still existed in the range between 3- and 4-log cells/ml. Significantly high numbers of HPC and DVC were found both in biofilm and in the effluent of the model system. The pipe material, exposure time, and the season were all relevant to the concentrations of VBNC and HPC bacteria detected. These findings indicate the importance of determining the number of VBNC cells and the type of pipe materials to estimate the HPC concentration in water distribution systems and thus the need of determining a DVC in evaluating disinfection efficiency.

CLPP of Biofilm on Different Pipe Materials in Drinking Water Distribution System (수돗물속에서 관재질에 따른 생물막의 CLPP)

  • Lee Dong-Geun;Lee Jae-Hwa;Lee Sang-Hyeon;Ha Bae-Jin;Ha Jong-Myung
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.891-894
    • /
    • 2004
  • The effect of pipe materials on biofilm communities were investigated by CLPP (community level physiology profile) using Biolog GN plates. Heterotrophic bacterial concentrations were $10^4\;-\;10^6\;CFU/cm^2$ and there was no differences between galvanized iron and carbon steel. Average optical density of Biolog plate was similar between two pipe materials. However, CLPP was different according to the type of pipe materials and exposed times to tap water, and CLPP was independent of bacterial concentration. This represents the differences of bacterial communities with pipes and water contact times.