• Title/Summary/Keyword: Galvanic corrosion potential

Search Result 79, Processing Time 0.028 seconds

An Electrochemical Evaluation of the Corrosion Property on the Welded Zone of Sea Water Pipe according to Welding Materials (용접 재료 별 해수 배관 용접부위의 부식 특성에 관한 전기화학적 평가)

  • Kim, Jin-Gyeong;Won, Chang-Uk;Jo, Hwang-Rae;Lee, Myung-Hoon;Kim, Yun-Hae;Moon, Kyung-Man
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • The sea water pipe of a ship's engine room is a severely corrosive environment caused by fast flawing sea water containing chloride ions and high conductivity. Therefore, leaking of sea water may occur as a result of local corrosion of the welded zone. Leaking is usually controlled by various welding methods. In this study, when the sea water pipe is welded with certain welding methods and welding electrodes, the corrosion resistance of WM (Welding metal) and HAZ (Heat affected zone) was investigated using electrochemical methods. Although the corrosion potential of the HAZ is higher than that of WM, the corrosion resistance of WM is superior to HAZ. However, when WM and HAZ are both opened to the sea water, the WM part with the anode was more seriously corroded than was the HAZ of the cathode by performance of a galvanic cell due to difference of the corrosion potential between HAZ and WM. In particular TIG welding showed relatively good results in corrosion resistance of both HAZ and WM compared to other welding methods.

Study on the Characteristics of Corrosion for Epoxy Coated Steel Structure (에폭시도막 강구조물의 부식특성에 관한 연구)

  • Lim, U-Jo;Cheun, Jeong-Hyun;Jeong, Gi-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.223-230
    • /
    • 1998
  • Recently, with the rapid development in the industries such as mechanical plants, automobiles, ships and marine structures, it is enlarged by the use of the SS 41 steel. This mechanical plants and marine structures are exposed m corrosion because of Cl-under marine environments. To protect their accidents, mainly applied anti-corrosion epoxy coating and various protective its structures. In this study, corrosion control characteristics on the epoxy coating were investigated by the galvanic corrosion of impressed voltage tester under marine environments The main results obtained are as follows; 1. Corrosion current density of amine-epoxy coating becomes more increased than that of other epoxy coating and the time area rate of pin hole and pit until 5% becomes most rapid. 2. The potential of SUS 304 stainless steel(cathode) for Al-epoxy coating is nearly zero potential. 3. Corrosion current density of Amine-epoxy by shot blast becomes more decreased than that of not shot blast and cathodic potential becomes more noble. 4. As distance of anode and cathode is more decreased, corrosion current density of epoxy coating is more increased and cathodic potential becomes less noble.

  • PDF

Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates

  • Suh, Hoyoung;Jung, Hyun Sung;Myung, Nosang V.;Hong, Kimin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3227-3231
    • /
    • 2014
  • Bamboo-like Te nanotubes were synthesized via the galvanic displacement reaction of NiFe nanowires with Ni-rich and Fe-rich segments. The thick and thin components of the synthesized Te nanotubes were converted from the Ni-rich and Fe-rich segments in the NiFe nanowires respectively. The dimensions of the Te nanotubes were controlled by employing sacrificial NiFe nanowires with tailored dimensions as the template for the galvanic displacement reaction. The segment lengths of the Te nanotubes were found to be dependent on those of the sacrificial NiFe nanowires. The galvanic displacement reaction was characterized by analyzing the open circuit potential and the corrosion resistance.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

A Study on the Characteristics of Local Corrosion for Gas Absorption Refrigeration and Hot Water Systems in LiBr-$H_2O$ Working Fluids (LiBr작동유체 중에서 가스흡수식 냉온수기의 국부부식 특성에 관한 연구)

  • Uh- Joh Lim;Ki-Cheol Jeong;Byoung-Du Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.714-720
    • /
    • 2003
  • Due to the electric power shortage in summer season and regulation of freon refrigerant, the application of gas absorption refrigeration and hot water systems are considerably increasing trend. But, this system consists of condenser, heat exchanger, supply pipe and radiator etc. which are easily corroded by acidity and dissolved oxygen and gases. In result, this system occurs scale attachment and corrosion damage like pitting and crevice corrosion. In this study, electrochemical polarization test of heat exchanger tubing material (copper, aluminium brass, 30% cupronickel(30% Cu-Ni)) was carried out in 60% lithium bromide solution at $95^{\circ}C$. As a result of polarization test, corrosion behavior by impressed potential and local corrosion. such as galvanic corrosion, pitting corrosion behavior, of tubing materials was investigated. The main results obtained are as follows: (1) The effect of pitting and crevice corrosion control of 30% cupronickel in 60% LiBr solution at $95^{\circ}C$ is very excellent. (2) Dissimilar metal corrosion of 30% cupronickel coupling to aluminium bronze is the most sensitive. (3) Current density behavior of tube materials by impressed potential is high in order of copper > aluminium brass > 30% cupronickel.

The Development of the Low Power Consumption and Long Life Battery using a Galvanic Series (저전력형 반영구적인 갈바니 전원장치 개발)

  • Bae, Jeong-Hyo;Kim, Dae-Kyeong;Ha, Tae-Hyun;Lee, Hyun-Goo;Choi, Sang-Bong;Jeong, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3201-3204
    • /
    • 2000
  • In general, analog tester or strip chart recorder have been used to measure the corrosion potential of structures such as gas pipelines, oil pipelines, hot water pipelines, power cables etc. Recently, automatic digital data logger substitutes for these manual equipment because using these manual equipments are tedious and time consuming. However, digital data logger also has a shortcoming, that is, short measuring time because of the short lifetime of batteries. Therefore, we developed a long lifetime and low power loss battery taking advantage of galvanic series. In this paper, the results of development for power generator using two metals and DC/DC converter in order to obtain enough voltage for the operation of digital data logger. DC/DC converter operates with 0.5[V]. Its output voltage is 3.5[V] and output current is from 60[mAh] to 1,200[mAh].

  • PDF

Energy harvesting techniques for remote corrosion monitoring systems

  • Kim, Sehwan;Na, Ungjin
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • An Remote Corrosion Monitoring (RCM) system consists of an anode with low potential, the metallic structures against corrosion, an electrode to provide reference potential, and a data-acquisition system to ensure the potential difference for anticorrosion. In more detail, the data-acquisition (DAQ) system monitors the potential difference between the metallic structures and a reference electrode to identify the correct potential level against the corrosion of the infrastructures. Then, the measured data are transmitted to a central office to remotely keep track of the status of the corrosion monitoring (CM) system. To date, the RCM system is designed to achieve low power consumption, so that it can be simply powered by batteries. However, due to memory effect and the limited number of recharge cycles, it can entail the maintenance fee or sometimes cause failure to protect the metallic structures. To address this issue, the low-overhead energy harvesting circuitry for the RCM systems has designed to replenish energy storage elements (ESEs) along with redeeming the leakage of supercapacitors. Our developed energy harvester can scavenge the ambient energy from the corrosion monitoring environments and store it as useful electrical energy for powering local data-acquisition systems. In particular, this paper considers the energy harvesting from potential difference due to galvanic corrosion between a metallic infrastructure and a permanent copper/copper sulfate reference electrode. In addition, supercapacitors are adopted as an ESE to compensate for or overcome the limitations of batteries. Experimental results show that our proposed harvesting schemes significantly reduce the overhead of the charging circuitry, which enable fully charging up to a 350-F supercapacitor under the low corrosion power of 3 mW (i.e., 1 V/3 mA).

Corrosion Behavior of Silicon Carbide/7091 Aluminum Matrix Composites (탄화규소/7091알루미늄 복합재료의 부식거동)

  • Kang, Wooseung
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.108-111
    • /
    • 2012
  • The effects of volume fraction (15-30%) of SiC particulate reinforcements on the corrosion behavior of SiCp/7091 Al composites in the 3.5% NaCl solution were studied by electrochemical techniques and scanning electron microscopy. The results showed that the amount of SiC particulate reinforcements did not cause much difference in the corrosion behavior of SiCp/7091 Al composites but the corrosion rate was proportional to the amount of SiCp reinforcement. And numerous pits and severe dissolution of the matrix was observed probably due to the discontinuities and galvanic effects between Al matrix and SiC reinforcements.

Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review

  • Kannan, M. Bobby
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.54-57
    • /
    • 2016
  • Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.