• 제목/요약/키워드: Galvanic cells

검색결과 11건 처리시간 0.022초

CoGe 박막 기반 galvanic cell의 특성 및 IoT 센서 네트워크에 대한 적용 (Properties of CoGe thin film-based galvanic cells and their applications for IoT sensor networks)

  • 전부일;한동수;윤기완
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1347-1356
    • /
    • 2022
  • 본 연구에서는 소자의 크기에 따른 코발트-저마늄 박막 기반의 galvanic cell의 특성을 조사하고, 이를 물 접촉 감지에 활용하기 위한 아두이노 기반 사물인터넷 센서 네트워크에의 적용을 제시한다. 본 연구에서 제안하는 코발트 저마늄 박막 기반 galvanic cell은 기존의 압전, 열전 에너지 하베스팅 소자와 다르게, 소자의 손상을 줄 수 있는 기계적인 변형이나 온도 구배를 필요로 하지 않는다는 점에서, 자가발전 센서 네트워크를 구축하는데 있어 더욱 적합한 에너지 하베스팅 소자로 적합하다. 본 연구는 스퍼터링 방식으로 증착된 코발트-저마늄 박막 기반의 galvanic cell을 센서로 활용함으로써 향후 자가발전 센서 네트워크의 실현 가능성에 대해 논의함으로써 향후 연구, 개발될 발전된 형태의 센서 네트워크 구축에 기여할 것으로 기대된다.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

군용 연료전지 적용을 위한 Mg-Graphite 펠렛의 가수분해 반응을 이용한 수소생산 (The Hydrogen Production from the Hydrolysis of Mg-Graphite Pellet for Military Fuel Cells)

  • 박민선;유민규;김종수;권혁상
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.160-166
    • /
    • 2015
  • On board hydrogen generation from the hydrolysis of an active metal is very attractive due to its economical, convenient, and safe reasons. A Mg-graphite pellet has been designed as a hydrogen source for portable fuel cell. Mg (1 g) + 0.10 g graphite pellet showed an excellent hydrogen generation rate that is equivalent to 15.8 ml/g.min from its hydrolysis. The hydrogen generation rate of the pellet is significantly increased due to the galvanic corrosion by galvanic cells between Mg anode and graphite cathode in a 10.wt. % NaCl solution at a room temperature.

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

Galvani전류가 백서의 하악골 성장에 미치는 영향에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE EFFECT OF THE GALVANIC CURRENT ON THE MANDIBULAR GROWTH IN RAT)

  • 양상덕;서정훈
    • 대한치과교정학회지
    • /
    • 제18권1호
    • /
    • pp.189-207
    • /
    • 1988
  • In almost all biologic systems, mechanically induced electric charge separation is a fundamental phenomenon. Since the hypothesis was established that the generation of electric potentials in bone by mechanical stress including muscular force might control the activity in bone by mechanical stress including muscular force might control the activity of osseous cells and their biopolymeric byproduct, the concept of electrically mediate growth mechanism, which involves biological growth and bone remodeling by any means, in living systems has been applied clinically and experimentally to orthopedic fracture repair, the regulation of orthodontic tooth movement, epiphyseal cartilage regeneration, etc. On the other hand, recent numerous research data available show apparently that the mandibular condyle has the characteristics of growth center as well as growth site. In addition, there exists a considerable difference of opinion as to the role of external pterygoid muscle in condylar growth. In view of these evidences, this. experiment was performed to investigate the effect of the galavic current on the growth of the mandible and condyle for elucidating the nature of condylar growth. The bimetallic device was composed of silver and platinum electrode connected with resistor (3.9 Mohm), which was expected to produce galvanic current of 23.6 nA according to the galvanic principle. The 25 Sprague-Dawley rats were divided into two group, 2 week group comprising 8 animals exposed to satanic current for 2 weeks and 3 control animals not exposed for 2 weeks, 4 week group comprising 10 animals in experimental group and 4 animals in control group applied for 4 weeks respectively. The experimental rats were subjected to application of the galvanic current invasively to codylar head surface and the control groups with sham electrode. On the basis of anatomic and histologic data from the mandibular condyle of experimental and control group, the following results were obtained. 1. After 2 weeks, there was no increase of mandibular size in experimental group over that of the control group. 2. After 4 weeks, the size of the condylar head was larger in experimental group than that of the control. 3. In 2 week group, the thickness of the mitotic compartment and hypertrophic chondroblastic layer was increased in experimental group. 4. In 4 week group, the number and the size of the hypertrophic chondroblasts were increased significantly on experimental group over that of the control group. 5. The application of the satanic current caused an increase in chondrocytic hypertrophy and intercellular matrix in both groups.

  • PDF

고압맥동전류 자극이 흰쥐의 탈신경근 섬유 형태에 미치는 영향 (Effects of High Voltage Pulsed Galvanic Stimulation on Skeletal Muscle in Rats)

  • 박환진
    • The Journal of Korean Physical Therapy
    • /
    • 제14권2호
    • /
    • pp.145-152
    • /
    • 2002
  • 고압맥동전류가 탈신경근의 형태에 미치는 영향을 알아보기 위하여 조직화학적 방법과 투과전자현미경적 관찰을 하였다. 웅성 흰쥐를 정상군, 탈신경군으로 각각 8마리씩 나누어 2주와 4주 후에 희생시켜 실험한 결과 다음과 같은 결과를 얻었다. 1. 조직화학적으로 형태를 관찰 한 결과 대조 1주군부터 근속과 근섬유사이에 염증세포가 관찰되고 핵이 근섬유속에 위치하는 것도 자주 관찰되었다. 2. 대조군도 비슷한 양상을 보였으나 4주군은 근괴사와 염증세포가 더욱 증가하였다. 3. 당원 1주군에서 실험군, 대조군 모두 정상근과 비슷한 양상을 보이나 4주군에서는 섬유를 구별할 수 없는 형태로 관찰되었다. 4. NADH-TR반응에서 적색섬유가 2주군에서 약간 증가하였고 그 후로는 구별이 불가능하였다. 5. 미세구조적으로 양쪽군 모두 근섬유가 굽어있고 mitochondria의 파괴로 인한 공포가 많이 관찰되었으나 전기자극 2주군에서는 일부에서 mitochondria증가를 관찰 하였다.

  • PDF

콘크리트 기공 솔루션에서의 열간 압연 및 열 기계 처리 철근의 부식 특성 (Corrosion Characteristics of hot rolled and thermo-mechanically treated steel rebar in concrete pore solution)

  • 이한승;싱 지텐드라 쿠마르
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.202-203
    • /
    • 2018
  • Chemistry and microstructure of steel reinforcement bars play an important role to control the corrosion in concrete environments. In present study, we have chosen two different microstructure of steel rebars produced from companies and assessed their corrosion characteristics in simulated concrete pore (SCP) solution with prolonged exposure periods. Hot rolled steel rebar showed more corrosion resistance compare to thermo-mechanically treated (TMT) one. The growth of passive is greater in hot rolled (A) than TMT (B) due to orientation of microstructure. TMT steel rebar exhibit distorted microstructure with many micro cells which enhances the galvanic coupling and induce the deterioration while on the other hand hot rolled rebars exhibit fine grain boundary which responsible in growth of uniform, adherent and protective passive film resultant improved impedance was observed.

  • PDF

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications

  • Madzvamuse, Alfred;Hamenu, Louis;Mohammed, Latifatu;Bon, Chris Yeajoon;Kim, Sang Jun;Park, Jeong Ho;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.314-322
    • /
    • 2017
  • The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

NASICON 고체 전해질을 사용한 SOx 가스 감지센서 (SOx Sensor Using NASICON Solid Electrolyte)

  • 최순돈;이광범
    • 센서학회지
    • /
    • 제5권4호
    • /
    • pp.25-34
    • /
    • 1996
  • NASICON 전해질을 이용하여 대기환경 측정용의 SOx센서를 개발하였다. 다음 형태의 $Na_{2}SiO_{3}(Pt)$ 기준전극을 사용한 갈바니 셀을 조립하였다. Pt | $Na_{2}SiO_{3}$ | NASICON | $Na_{2}SO_{4}$ | Pt, $SO_{2}$, air $SO_{2}$ 와 NASICON의 반응을 피하기 위해 $Na_{2}SO_{4}(Pt)$를 지시전극으로 사용하였으며, $400{\sim}550^{\circ}C$ 범위에서 $5{\sim}95ppm$ 농도의 $SO_{2}$ 가스를 주입하고 나서 EMF를 측정하였다. $500^{\circ}C$ 이상의 온도에서 측정된 EMF는 계산치와 일치하였으나, $500^{\circ}C$ 이하에서는 불완전한 평형 때문에 센서의 거동이 불안정하였다. 감응시간은 약 10분 정도 이내였다. 이전지의 안정도와 응답시간으로 보건데, $Na_{2}SiO_{3}(Pt)$를 기준전극으로 하고 순수 $Na_{2}SO_{4}(Pt)$를 지시전극으로한 NASICON 고체전해질은 SOx 측정용의 상업적인 센서물질로써 가능성이 있다.

  • PDF