• Title/Summary/Keyword: Galvanic cells

Search Result 11, Processing Time 0.105 seconds

Properties of CoGe thin film-based galvanic cells and their applications for IoT sensor networks (CoGe 박막 기반 galvanic cell의 특성 및 IoT 센서 네트워크에 대한 적용)

  • Jeon, Buil;Han, Dongsoo;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1347-1356
    • /
    • 2022
  • In this paper, we investigate the properties of CoGe thin film-based galvanic cells as a function of their dimension (cell length, width, etc.) and show their application as sensors to Arduino-based IoT sensor networks to detect water contact. Because these CoGe thin film-based galvanic cells do not require mechanical strains or temperature gradients unlike piezoelectric and thermoelectric energy harvesters, we think that these thin film-based galvanic cells are more suitable for self-powered sensor networks demanding sustainable and robust energy harvesters. In the past, a sputter-deposited CoGe thin film has not been intensively investigated for energy harvesting appilcations. Thus, in this study, we perform a feasibility study of galvanic cells composed of a sputter-deposited CoGe thin film to see if they can be applied as potential self-powered sensors. We believe that this paper will be of great help in developing even more enhanced sensor networks.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

The Hydrogen Production from the Hydrolysis of Mg-Graphite Pellet for Military Fuel Cells (군용 연료전지 적용을 위한 Mg-Graphite 펠렛의 가수분해 반응을 이용한 수소생산)

  • Park, Minsun;Yu, Minkyu;Kim, Jongsoo;Kwon, Hyuksang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 2015
  • On board hydrogen generation from the hydrolysis of an active metal is very attractive due to its economical, convenient, and safe reasons. A Mg-graphite pellet has been designed as a hydrogen source for portable fuel cell. Mg (1 g) + 0.10 g graphite pellet showed an excellent hydrogen generation rate that is equivalent to 15.8 ml/g.min from its hydrolysis. The hydrogen generation rate of the pellet is significantly increased due to the galvanic corrosion by galvanic cells between Mg anode and graphite cathode in a 10.wt. % NaCl solution at a room temperature.

Evaluation of effect of galvanic corrosion between nickel-chromium metal and titanium on ion release and cell toxicity

  • Lee, Jung-Jin;Song, Kwang-Yeob;Ahn, Seung-Geun;Choi, Jung-Yun;Seo, Jae-Min;Park, Ju-Mi
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.172-177
    • /
    • 2015
  • PURPOSE. The purpose of this study was to evaluate cell toxicity due to ion release caused by galvanic corrosion as a result of contact between base metal and titanium. MATERIALS AND METHODS. It was hypothesized that Nickel (Ni)-Chromium (Cr) alloys with different compositions possess different corrosion resistances when contacted with titanium abutment, and therefore in this study, specimens ($10{\times}10{\times}1.5mm$) were fabricated using commercial pure titanium and 3 different types of Ni-Cr alloys (T3, Tilite, Bella bond plus) commonly used for metal ceramic restorations. The specimens were divided into 6 groups according to the composition of Ni-Cr alloy and contact with titanium. The experimental groups were in direct contact with titanium and the control groups were not. After the samples were immersed in the culture medium - Dulbecco's modified Eagle's medium[DMEM] for 48 hours, the released metal ions were detected using inductively coupled plasma mass spectrometer (ICP-MS) and analyzed by the Kruskal-Wallis and Mann-Whitney test (P<.05). Mouse L-929 fibroblast cells were used for cell toxicity evaluation. The cell toxicity of specimens was measured by the 3-{4,5-dimethylthiazol-2yl}-2,5-diphenyltetrazolium bromide (MTT) test. Results of MTT assay were statistically analyzed by the two-way ANOVA test (P<.05). Post-hoc multiple comparisons were conducted using Tukey's tests. RESULTS. The amount of metal ions released by galvanic corrosion due to contact between the base metal alloy and titanium was increased in all of the specimens. In the cytotoxicity test, the two-way ANOVA showed a significant effect of the alloy type and galvanic corrosion for cytotoxicity (P<.001). The relative cell growth rate (RGR) was decreased further on the groups in contact with titanium (P<.05). CONCLUSION. The release of metal ions was increased by galvanic corrosion due to contact between base metal and titanium, and it can cause adverse effects on the tissue around the implant by inducing cytotoxicity.

AN EXPERIMENTAL STUDY ON THE EFFECT OF THE GALVANIC CURRENT ON THE MANDIBULAR GROWTH IN RAT (Galvani전류가 백서의 하악골 성장에 미치는 영향에 관한 실험적 연구)

  • Yang, Sang-Duk;Suhr, Cheng Hoon
    • The korean journal of orthodontics
    • /
    • v.18 no.1 s.25
    • /
    • pp.189-207
    • /
    • 1988
  • In almost all biologic systems, mechanically induced electric charge separation is a fundamental phenomenon. Since the hypothesis was established that the generation of electric potentials in bone by mechanical stress including muscular force might control the activity in bone by mechanical stress including muscular force might control the activity of osseous cells and their biopolymeric byproduct, the concept of electrically mediate growth mechanism, which involves biological growth and bone remodeling by any means, in living systems has been applied clinically and experimentally to orthopedic fracture repair, the regulation of orthodontic tooth movement, epiphyseal cartilage regeneration, etc. On the other hand, recent numerous research data available show apparently that the mandibular condyle has the characteristics of growth center as well as growth site. In addition, there exists a considerable difference of opinion as to the role of external pterygoid muscle in condylar growth. In view of these evidences, this. experiment was performed to investigate the effect of the galavic current on the growth of the mandible and condyle for elucidating the nature of condylar growth. The bimetallic device was composed of silver and platinum electrode connected with resistor (3.9 Mohm), which was expected to produce galvanic current of 23.6 nA according to the galvanic principle. The 25 Sprague-Dawley rats were divided into two group, 2 week group comprising 8 animals exposed to satanic current for 2 weeks and 3 control animals not exposed for 2 weeks, 4 week group comprising 10 animals in experimental group and 4 animals in control group applied for 4 weeks respectively. The experimental rats were subjected to application of the galvanic current invasively to codylar head surface and the control groups with sham electrode. On the basis of anatomic and histologic data from the mandibular condyle of experimental and control group, the following results were obtained. 1. After 2 weeks, there was no increase of mandibular size in experimental group over that of the control group. 2. After 4 weeks, the size of the condylar head was larger in experimental group than that of the control. 3. In 2 week group, the thickness of the mitotic compartment and hypertrophic chondroblastic layer was increased in experimental group. 4. In 4 week group, the number and the size of the hypertrophic chondroblasts were increased significantly on experimental group over that of the control group. 5. The application of the satanic current caused an increase in chondrocytic hypertrophy and intercellular matrix in both groups.

  • PDF

Effects of High Voltage Pulsed Galvanic Stimulation on Skeletal Muscle in Rats (고압맥동전류 자극이 흰쥐의 탈신경근 섬유 형태에 미치는 영향)

  • Park Hwan-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.145-152
    • /
    • 2002
  • This study was carried out of to determine effects of high voltage pulsed galvanic stimulation on the soleus. target muscle of the sciatic nerve, of white rat two condition. The coditions included normal, and denervated muscle. The histochemical, ultrastructural observations were made. The following results were obtains. 1. The histochemical observations found the inflammatory cells between muscle bundle and muscle fiber since 1-week control group. In addition, nucleus located in the muscle fiber was frequently observed. 2. The experimental group showed a similar phenomenom to the normal muscles in terms of glycogen granules in the 1-week group, where as fiber were not distinguishable in4-weeks group which indicated that the degenerative changes had occured. 3. The NADH-TR reaction showed that the red muscle slightly increased in the 2-weeks group, and the distinguished was impossible the red fiber 4. The ultrastructures of the muscles in both groups were severely bend, and a number of vacuoles were observed due to the destruction of mitochondria..

  • PDF

Corrosion Characteristics of hot rolled and thermo-mechanically treated steel rebar in concrete pore solution (콘크리트 기공 솔루션에서의 열간 압연 및 열 기계 처리 철근의 부식 특성)

  • Lee, Han-Seung;Singh, Jitendra Kumar
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.202-203
    • /
    • 2018
  • Chemistry and microstructure of steel reinforcement bars play an important role to control the corrosion in concrete environments. In present study, we have chosen two different microstructure of steel rebars produced from companies and assessed their corrosion characteristics in simulated concrete pore (SCP) solution with prolonged exposure periods. Hot rolled steel rebar showed more corrosion resistance compare to thermo-mechanically treated (TMT) one. The growth of passive is greater in hot rolled (A) than TMT (B) due to orientation of microstructure. TMT steel rebar exhibit distorted microstructure with many micro cells which enhances the galvanic coupling and induce the deterioration while on the other hand hot rolled rebars exhibit fine grain boundary which responsible in growth of uniform, adherent and protective passive film resultant improved impedance was observed.

  • PDF

Lithium Bis(oxalate)borate as an Electrolyte Salt for Supercapacitors in Elevated Temperature Applications

  • Madzvamuse, Alfred;Hamenu, Louis;Mohammed, Latifatu;Bon, Chris Yeajoon;Kim, Sang Jun;Park, Jeong Ho;Ko, Jang Myoun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.314-322
    • /
    • 2017
  • The electrolyte plays one of the most significant roles in the performance of electrochemical supercapacitors. Most liquid organic electrolytes used commercially have temperature and potential range constraints, which limit the possible energy and power output of the supercapacitor. The effect of elevated temperature on a lithium bis(oxalate)borate(LiBOB) salt-based electrolyte was evaluated in a symmetric supercapacitor assembled with activated carbon electrodes and different electrolyte blends of acetonitrile(ACN) and propylene carbonate(PC). The electrochemical properties were investigated using linear sweep voltammetry, cyclic voltammetry, galvanostatic charge-discharge cycles, and electrochemical impedance spectroscopy. In particular, it was shown that LiBOB is stable at an operational temperature of $80^{\circ}C$, and that, blending the solvents helps to improve the overall performance of the supercapacitor. The cells retained about 81% of the initial specific capacitance after 1000 galvanic cycles in the potential range of 0-2.5 V. Thus, LiBOB/ACN:PC electrolytes exhibit a promising role in supercapacitor applications under elevated temperature conditions.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

SOx Sensor Using NASICON Solid Electrolyte (NASICON 고체 전해질을 사용한 SOx 가스 감지센서)

  • Choi, Soon-Don;Lee, Kwang-Beum
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.25-34
    • /
    • 1996
  • A SOx sensor using NASICON electrolyte was developed for monitoring of air pollution. The following galvanic cell with $Na_{2}SiO_{3}(Pt)$ reference electrode was assembled : Pt | $Na_{2}SiO_{3}$ | NASICON | $Na_{2}SO_{4}$ | Pt, $SO_{2}$, air $Na_{2}SO_{4}$ was used as an indicator electrode to protect NASICON electrolytes from chemical reaction with $SO_{2}$. The EMFs were measured after injecting $SO_{2}$ in the initial concentrations range of $5{\sim}95ppm$ at $400{\sim}550^{\circ}C$. The measured and calculated potentials were in good agreement above $500^{\circ}C$. However, the cells were unstable below $500^{\circ}C$, most likely due to incomplete attainment of chemical equilibrium. Response time was within 10 min. Based on the stability and response time of this cell, the NASICON solid electrolyte with $Na_{2}SiO_{3}(Pt)$ as the reference electrode and $Na_{2}SO_{4}$ (Pt)as the indicator electrode showed the possibility of a reliable, inexpensive commercial solid-state SOx sensor.

  • PDF