• 제목/요약/키워드: Galloping

검색결과 89건 처리시간 0.04초

Unsteady galloping of sharp-edged bluff bodies: experimental observations on the effect of the wind angle of attack

  • Chen, Cong;Dai, Bingyu;Wieczorek, Niccolo;Unglaub, Julian;Thiele, Klaus
    • Wind and Structures
    • /
    • 제35권4호
    • /
    • pp.255-268
    • /
    • 2022
  • Light-weight or low-damped structures may encounter the unsteady galloping instability that occurs at low reduced wind speeds, where the classical quasi-steady assumption is invalid. Although this unsteady phenomenon has been widely studied for rectangular cross sections with one side perpendicular to the incidence flow, the effect of the mean wind angle of attack has not been paid enough attention yet. With four sectional models of different side ratios and geometric shapes, the presented research focuses on the effect of the wind angle of attack on unsteady galloping instability. In static tests, comparatively strong vortex shedding force was noticed in the middle of the range of flow incidence where the lift coefficient shows a negative slope. In aeroelastic tests with a low Scruton number, the typical unsteady galloping, which is due to an interaction with vortex-induced vibration and results in unrestricted oscillation initiating at the Kármán vortex resonance wind speed, was observed for the wind angles of attack that characterize relatively strong vortex shedding force. In contrast, for the wind angles of attack with relatively weak shedding force, an "atypical" unsteady galloping was found to occur at a reduced wind speed clearly higher than the Kármán-vortex resonance one. These observations are valid for all four wind tunnel models. One of the wind tunnel models (with a bridge deck cross section) was also tested in a turbulent flow with an intensity about 9%, showing only the atypical unsteady galloping. However, the wind angle of attack with the comparatively strong vortex shedding force remains the most unfavorable one with respect to the instability threshold in low Scruton number conditions.

Wake galloping phenomena between two parallel/unparallel cylinders

  • Kim, Sunjoong;Kim, Ho-Kyung
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.511-528
    • /
    • 2014
  • The characteristics of wake galloping phenomenon for two parallel/unparallel circular cylinders were investigated via wind tunnel tests. The two cylinders were initially deployed in parallel and wake galloping phenomena were observed by varying the center-to-center distance. The effect of an unparallel arrangement of two cylinders was next investigated by fixing the spacing ratio of one side of the cylinders at 5.0D and the other side at 3.0D, in which D represents the diameter of the cylinder. For the unparallel disposition, the 5.0D side showed a small, limited vibration while the 3.0D side produced much larger amplitude of vibration, resulting in a rolling motion. However, the overall amplitude appeared to decrease in unparallel disposition when compared with the amplitude of the 3.0D - 3.0D parallel case. This represents the mitigation effect of wake galloping due to the unparallel disposition between two cylinders. Flow visualization tests with particle image velocimetry were conducted to identify flow fields between two cylinders. The test results demonstrate the existence of a complex interaction of the downstream cylinder with the shear layer generated by the upstream cylinder. When the spacing ratio was large enough, the shear layer was not observed and the downstream cylinder showed only limited random vibration.

THE STUDY OF THE DIFFERENCE BETWEEN GALLOPING CABLE AND SUSPENSION BRIDGE CABLE

  • Oh, Hye-Young
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권1호
    • /
    • pp.35-46
    • /
    • 1997
  • We consider the common and different results between the oscillation of galloping cable and the oscillation of suspension bridge cable through the long-term behavior. Numerical results are presented by using the second-order Runge-Kutta method under various initial conditions. There appeared to be nonlinear forms. Periodicity, symmetry, and longitudinality are differently appeared in two kinds of cables.

  • PDF

Behaviors of the Spacers on the Galloping of Power Transmission Lines

  • Kim, Hwan-Seong;Nguyen, Tuong-Long;Byun, Gi-Sig
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.128-133
    • /
    • 2003
  • In this paper, we have proposed a method by using virtual simulation to calculate the behaviors of spacers to avoid conductor galloping with the hanging composite polymer spacer between conductors on different phases. We have considered with three types of modeling considerations for the analysis of galloping in power transmission lines, such as iced-single conductors without spacer, iced-single conductors with spacers, and iced-two bundle conductors with spacers. In simulation, the finite element method is used to calculate the structural response with geometric nonlinear behavior. The iced conductor is modeled by two beam-element faces with which it is connected. The ANSYS program is applied too. First, the calculation results show that the two beam-element model is very suitable to make a virtual simulation. Second, the amplitude of conductor galloping is reduced after hanged spacers. Third, when number of spacer is increased, the maximum magnitude of natural frequency of iced conductor will reduce. Final, the behaviors of spacers are verified in viewpoint of standard cases.

  • PDF

쿨롱 마찰계수들의 통계적 특성을 고려한 지면과 갤러핑을 하는 4 족 로봇간 접촉 모델링 (Contact Modeling between the Ground and the Galloping Quadruped Robot Considering Statistical Characteristics of Coulomb Friction Coefficients)

  • 권성훈;박종현;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.826-830
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF

Investigation of wind-induced dynamic and aeroelastic effects on variable message signs

  • Meyer, Debbie;Chowdhury, Arindam Gan;Irwin, Peter
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.793-810
    • /
    • 2015
  • Tests were conducted at the Florida International University (FIU) Wall of Wind (WOW) to investigate the susceptibility of Variable Message Signs (VMS) to wind induced vibrations due to vortex shedding and galloping instability. Large scale VMS models were tested in turbulence representative of the high frequency end of the spectrum in a simulated suburban atmospheric boundary layer. Data was measured for the $0^{\circ}$ and $45^{\circ}$ horizontal wind approach directions and vertical attack angles ranging from $-4.5^{\circ}$ to $+4.5^{\circ}$. Analysis of the power spectrum of the fluctuating lift indicated that vertical vortex oscillations could be significant for VMS with a large depth ratio attached to a structure with a low natural frequency. Analysis of the galloping test data indicated that VMS with large depth ratios, greater than about 0.5, and low natural frequency could also be subject to galloping instability.

Bias Compensation Algorithm of Acceleration Sensor on Galloping Measurement System

  • Kim, Hwan-Seong;Byung, Gi-Sig;So, Sang-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.127.6-127
    • /
    • 2001
  • In this paper, we deal with two bias compensation algorithms of acceleration sensor for measuring the galloping on power transmission line. Firstly, the block diagram of galloping measurement system is given and a galloping model is presented. Secondly, two compensation algorithms, a simple compensation and a period compensation, are proposed. A simple compensation algorithm use the drafts of velocity and distance at fixed periods, so it is useful for constant bias case. Next, a period compensation algorithm can compensate a periodic bias. This algorithm use the previous measured data and compensated data for constant period, where the period is obtained by FFT method. Lastly, the effectiveness of proposed algorithms is verified by comparing between two algorithms in simulation, and its characteristics and the bias error bound are shown, respectively.

  • PDF

송전선 갤러핑 진동에 대한 동적 모델링 연구 (Dynamic Modeling of Transmission Line Galloping Vibrations)

  • 곽문규;구재량;배용채
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.518-522
    • /
    • 2014
  • This paper is concerned with the dynamic modeling of transmission line undergoing galloping vibrations. To this end, the kinetic and potential energies of a uniform wire vibrating in space are derived. The equations of motion suitable for numerical simulations are derived using the assumed mode method and Lagrange equation. The resulting equations of motion are expressed in matrix form. To cope with bundled transmission line, the spacer was modelled by a spring element. As a numerical example, a two-wire transmission line combined by spacers was considered. Natural vibration characteristics show that the in-plane vibrations of the transmission line appeared in low frequency range, which may lead to galloping.

  • PDF

Numerical analysis of interference galloping of two identical circular cylinders

  • Blazik-Borowa, E.;Flaga, A.
    • Wind and Structures
    • /
    • 제1권3호
    • /
    • pp.243-253
    • /
    • 1998
  • The paper deals with numerical analysis of interference galloping of two elastically supported circular cylinders of equal diameters. The basis of the analysis is quasi-steady model of this phenomenon. The model assumes that both cylinders participate in process of interference galloping and they have two degrees of freedom. The movement of the cylinders is written as a set of four nonlinear differential equations. On the basis of numerical solutions of this equations the authors evaluate the correctness of this quasi-steady model. Then they estimate the dependence of a critical reduced velocity on the Scruton number, turbulence intensity and arrangements of the cylinders.