• Title/Summary/Keyword: Gallium alloy

Search Result 13, Processing Time 0.024 seconds

COMPARISON OF THE PHYSICAL PROPERTIES BETWEEN GALLIUM ALLOY AND HIGH COPPER AMALGAM ALLOYS (갈륨합금과 고동 아말감 합금의 물리적 성질 비교)

  • Kim, Hyeon-Cheol;Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.278-287
    • /
    • 1998
  • The purpose of this study was to compare the physical properties between high copper amalgam and gallium restorative material. In this study, the specimens for the 4 experimatal groups (Valiant, Valiant PhD, Gallium Alloy GF II. Gallium Alloy GF II triturated with some addition of alcohol) were prepared in the manner of which stated in ADA specification No.1 for amalgam alloy. And then, measured and compared the value of compressive strength. creep, and dimensional change during hardening of each sample. The results were as follows: 1. In the compressive strength, the Valiant-lathe cut type high copper amalgam-had the highest value of strength(p<0.05), and the Valiant PhD-admixed type high copper amalgam-showed the higher value of strength than the Gallium Alloy GF II(p<0.05) but had no significant difference with Gallium Alloy GF II triturated with some addition of alcohol(p>0.05). 2. In the creep. the Valiant PhD showed the highest value of creep (p<0.05), but there was no significant difference between Gallium Alloy GF II and Valiant(p>0.05). 3. In the dimensional change during hardening, no two groups were significantly different at the 0.050 level. 4. There was no significant difference between Gallium Alloy GF II and the same material which was triturated with some addition of alcohol(p>0.05).

  • PDF

COMPARISON OF MICROLEAKAGE OF GALLIUM ALLOY AND AMALGAM RESTORATION (갈륨과 아말감 수복물의 변연미세누출에 관한 비교 연구)

  • Lee, Min-Ho;Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.269-277
    • /
    • 1998
  • This in vitro study compared the microleakage of 4 lining conditions when used with Gallium alloy GF II and Valiant PhD. Class V cavity was prepared on both buccal and lingual surface of 80 extracted human premolar & molar teeth with one margin in enamel and another in dentin. Before restoration, prepared cavities were applied to no-liner, cavity varnish, Scotchbond multipurpose, and Superbond D-liner II plus according to manufacture's instructions. The restored teeth were stored in saline for 1 week, then thermocycled for 100 times, stained with 0.5% basic fuchsin dye for 1 day, sectioned, and observed using a light microscope. Following results were obtained. 1. The leakage value of Superbond-lined group showed significantly lower than that of nolined group on both margins of Valiant PhD(p<0.05). 2; There was no significant difference between the 4 lining conditions in Gallium alloy GF II (p>0.05). 3. When We make a comparison between Gallium alloy GF II and Valiant PhD under same lining conditions, the microleakage value of Gallium alloy GF II showed lower than that of Valiant PhD on occlusal & gingival margin(p<0.05) except for Superbond-lined group(p>0.05).

  • PDF

SURFACE DEGRADATION OF GALLIUM-ALLOYS DURING TOOTH BRUSHING IN VITRO

  • Lee, Seok-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • When the exposure surface of restoration is brushed with various toothpaste in the mouth, wear or undesirable surface deposit of restoration can occur. Surface change of gallium alloys according to brushing and toothpaste may directly affect oral hygiene. The aim of this study was to evaluate the surface alterations of Gallium alloys during tooth brushing with different prophylactic agents. Two gallium-alloys and an amalgam as a control were investigated. Without and with brushing were applied with three kinds of prophylactic agents on the sample for 0, 1, 5, 10, 60 and 360 minutes. At each time interval, surface roughness was recorded by a profilometer and some pictures were taken by a SEM. All results were analyzed by the one-way ANOVA, followed by Tukey multiple comparisons and the simple linear regression analysis. The results indicate that gallium alloys are more susceptible to surface degradation during tooth brushing than amalgam with respect to the specific prophylactic agent used.

A COMPARATIVE STUDY ON THE MICROLEAKAGE OF THE AMALGAM AND GALLIUM ALLOY (아말감과 갈륨알로이의 미세 변연 누출에 관한 비교 연구)

  • Kim, Jung-Wook
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.323-334
    • /
    • 1998
  • The purpose of this study was to compare the microleakage of the amalgam and the gallium alloy when several lining materials were applied. The ANA 2000, high copper lathecut type amalgam(AM group) and Gallium Alloy GF II (GF group) were used. The fifty extracted sound molars were randomly assigned to AM group and GF group, and the buccal and lingual class V cavities with a size $3{\times}2{\times}2mm$ were prepared. The prepared cavities were randomly assigned to group 1 : no liner used control, group 2 : Copalite, group 3 : Panavia 21, group 4 : All-bond 2, and group 5 : Superbond C&B. After liner placement and amalgam filling, the specimens were stored in $37^{\circ}C$ normal saline for 24 hours and then thermocycled from $5^{\circ}C$ to $55^{\circ}C$ thousand times. The specimens were stored in the 1% methylene blue solution for 24 hours and sectioned and examined by stereomicroscope. The results obtained from this study can be summarized as follows : 1. In the GF group, microleakage values of group 2, 3, 4, 5 were significantly lower than that of group 1 (p<0.05). 2. In the AM group, microleakage values of group 3 and 4 were significantly lower than that of group 1 (p<0.05), but microleakage values of group 2 and 5 did not differ from that of group 1 (p>0.05). 3. The GF group was similar(group, 1 3, 4) or superior(group 2, 5) to the AM group in the aspect of the microleakage.

  • PDF

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.

Magnetic Microstructures and Corrosion Behaviors of Nd-Fe-B-Ti-C Alloy by Ga Doping

  • Wu, Qiong;Zhang, Pengyue;Ge, Hongliang;Yan, Aru;Li, Dongyun
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.240-244
    • /
    • 2013
  • The influences of Gallium doping on the magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloys are investigated. The cooling rate for obtaining fully amorphous structure is raised, and the glassforming ability is improved by the Ga addition. The High Resolution Transmission Electron Microscopy image shows that the ${\alpha}$-Fe and $Fe_3B$ soft magnetic phases become granular surrounded by the $Nd_2Fe_{14}B$ hard magnetic phase. The rms and $({\Delta}{\varphi})_{rms}$ value of Nd-Fe-B-Ti-C nanocomposite alloy thick ribbons in the typical topographic and magnetic force images detected by Magnetic Force Microscopy(MFM) decreases with 0.5 at% Ga addition. The corrosion resistances of $Nd_9Fe_{73}B_{12.6}C_{1.4}Ti_{4-x}Ga_x$ (x = 0, 0.5, 1) alloys are enhanced by the Ga addition. It can be attributed to the formation of more amorphous phases in the Ga doped samples.

Electrochemically Fabricated Alloys and Semiconductors Containing Indium

  • Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.95-115
    • /
    • 2012
  • Although indium (In) is not an abundant element, the use of indium is expected to grow, especially as applied to copper-indium-(gallium)-selenide (CI(G)S) solar cells. In future when CIGS solar cells will be used extensively, the available amount of indium could be a limiting factor, unless a synthetic technique of efficiently utilizing the element is developed. Current vacuum techniques inherently produce a significant loss of In during the synthetic process, while electrodeposition exploits nearly 100% of the In, with little loss of the material. Thus, an electrochemical process will be the method of choice to produce alloys of In once the proper conditions are designed. In this review, we examine the electrochemical processes of electrodeposition in the synthesis of indium alloys. We focus on the conditions under which alloys are electrodeposited and on the factors that can affect the composition or properties of alloys. The knowledge is to facilitate the development of electrochemical means of efficiently using this relatively rare element to synthesize valuable materials, for applications such as solar cells and light-emitting devices.

Electrochemical extraction of uranium on the gallium and cadmium reactive electrodes in molten salt

  • Valeri Smolenski;Alena Novoselova
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • The electrochemical extraction of uranium in ternary low melting LiCl-KCl-CsCl eutectic on inert and reactive electrodes via different electrochemical techniques was investigated. It was established that the electrochemical reduction process of U(III) ions on the inert W electrode was irreversible and proceeded in one stage. On reactive liquid Ga and liquid Cd electrodes the reduction of uranium ions took place with the considerable depolarization with the formation of UGa2, UGa3 and UCd11 intermetallic compounds. Thermodynamic characteristics of uranium compounds and alloys were calculated. The conditions for the extraction of uranium from the electrolyte in the form of alloys on both liquid reactive electrodes via potentiostatic electrolysis were found.

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells (디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성)

  • Cho, Il Wook;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.321-326
    • /
    • 2013
  • The effect of rapid thermal annealing (RTA) on the optical properties of digital-alloy InGaAlAs multiple quantum well (MQW) structures have been investigated by using photoluminescence (PL) and time-resolved PL measurements as a function of RTA temperature. The MQW samples were annealed from $700^{\circ}C$ to $850^{\circ}C$ for 30 s in a nitrogen atmosphere. The MQW sample annealed at $750^{\circ}C$ exhibited the strongest PL intensity and the narrowest FWHM (Full width at half maximum), indicating the reduced nonradiative recombination centers and the improved interfaces between the wells and barriers. The MQW samples annealed at $800^{\circ}C$ and $850^{\circ}C$ showed the decreased PL intensities and blueshifted PL peaks compared to $750^{\circ}C$-annealed sample. The blueshift of PL peak with increasing RTA temperatures are ascribed to the increase of aluminum due to intermixing of gallium (Ga) and aluminum (Al) in the interfaces of InGaAs/InAlAs short-period superlattices. The decrease of PL intensity after annealing at $800^{\circ}C$ and $850^{\circ}C$ are attributed to the interface roughening and lateral composition modulation caused by the interdiffusion of Ga and Al and indium segregation, respectively. With increasing RTA temperature the PL decay becomes slower, indicating the decrease of nonradiative defect centers. The optical properties of digital-alloy InGaAlAs MQW structures can be improved significantly with optimum RTA conditions.