• Title/Summary/Keyword: Gallic Acid

Search Result 676, Processing Time 0.021 seconds

Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells (HepG2 Cell에서 녹차씨박 에탄올 추출물의 암세포 증식 억제효과)

  • Noh, Kyung-Hee;Min, Kwan-Hee;Seo, Bo-Young;Kim, Hye-Ok;Kim, So-Hee;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.767-774
    • /
    • 2011
  • Defatted green tea seed was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether, ethyl acetate and butanol. The ethanol and butanol extracts showed greater increases in antiproliferation potential against liver cancer cells than petroleum ether, ethyl acetate, $H_2O$, and hot water extracts did. Thus, this study was carried out to investigate the anti-proliferative actions of defatted green tea seed ethanol extract (DGTSE) in HepG2 cancer cells. The DGTSE contained catechins including EGC ($1039.1{\pm}15.2\;g/g$), tannic acid ($683.5{\pm}17.61\;{\mu}g/g$), EC ($62.4{\pm}5.00\;{\mu}g/g$), ECG ($24.4{\pm}7.81\;{\mu}g/g$), EGCG ($20.9{\pm}0.96\;{\mu}g/g$) and gallic acid ($2.4{\pm}0.68\;{\mu}g/g$), but caffeic acid was not detected when analyzed by HPLC. The anti-proliferation effect of DGTSE toward HepG2 cells was 83.13% when treated at $10\;{\mu}g$/mL, of DGTSE, offering an $IC_{50}$ of $6.58\;{\mu}g$/mL. DGTSE decreased CYP1A1 and CYP1A2 protein expressions in a dose-dependent manner. Quinone reductase and antioxidant response element (ARE)-luciferase activities were increased about 2.6 and 1.94-fold at a concentration of $20\;{\mu}g$/mL compared to a control group, respectively. Enhancement of phase II enzyme activity by DGTSE was shown to be mediated via interaction with ARE sequences in genes encoding the phase enzymes. DGTSE significantly (p<0.05) suppressed prostaglandin $E_2$ level, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) protein expressions, and NF${\kappa}$B translocation, but did not affected nitric oxide production. From the above results, it is concluded that DGTSE may ameliorate tumor and inflammatory reactions through the elevation of phase II enzyme activities and suppression of NF${\kappa}$B translocation and TNF-${\alpha}$ protein expressions, which support the cancer cell anti-proliferative effects of DGTSE in HepG2 cells.

Suppressive Effect of Green Tea Seed Coat Ethyl Acetate Fraction on Inflammation and Its Mechanism in RAW264.7 Macrophage Cell (RAW264.7 Macrophage Cell에서 녹차씨껍질 에틸아세테이트 분획의 염증억제 효과 및 기전 연구)

  • Noh, Kyung-Hee;Jang, Ji-Hyun;Min, Kwan-Hee;Chinzorig, Radnaabazar;Lee, Mi-Ock;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.625-634
    • /
    • 2011
  • Green tea seed coat (GTSC) was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether (PE), ethyl acetate (EtOAC) and butanol (BuOH). The EtOAC fraction showed the highest level in total phenol contents and the lowest level in nitric oxide (NO) production in LPS-stimulated RAW264.7 macrophage cell. Thus, this study was carried out to investigate the anti-inflammatory and its mechanisms of GTSC EtOAC fraction in LPS-stimulated RAW264.7 macrophage cell. GTSC EtOAC fraction contained EGC ($1146.48{\pm}11.01\;{\mu}g/g$), tannic acid ($966.99{\pm}32.24\;{\mu}g/g$), EC ($70.88{\pm}4.39\;{\mu}g/g$), gallic acid ($947.61{\pm}1.03\;{\mu}g/g$), caffeic acid ($37.69{\pm}1.46\;{\mu}g/g$), ECG ($35.46{\pm}3.19\;{\mu}g/g$), and EGCG ($15.53{\pm}0.09\;{\mu}g/g$) when analyzed by HPLC. NO production was significantly (p<0.05) suppressed in a dose-dependent manner with an $IC_{50}$ of $80.11\;{\mu}g$/mL. Also prostaglandin $E_2$ level was also inhibited in a dose-dependent manner. Moreover, iNOS protein expression was suppressed in dose-dependent manner but COX-2 gene expression was not affected. Total antioxidant capacity and glutathione (GSH) levels were enhanced more than the LPS-control. Expressions of antioxidative enzymes including catalase, GSH-reductase and Mn-SOD were elevated compared to LPS-control. Nuclear p65 level was decreased in the GTSC EtOAC fraction in a dose-dependent manner. These results indicate that GTSC EtOAC fraction inhibit oxidative stress and inflammatory responses through elevated GSH levels, antioxidative enzymes expressions and suppression of iNOS expression via NF-${\kappa}B$ down-regulation.

Change of physicochemical properties, phytochemical contents and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit (보리수 열매 식초 발효 중 이화학적 특성, phytochemical 함량 및 생리활성 변화)

  • Cho, Kye Man;Hwang, Chung Eun;Joo, Ok Soo
    • Food Science and Preservation
    • /
    • v.24 no.1
    • /
    • pp.125-133
    • /
    • 2017
  • This study evaluated the changes of physiochemical properties, phytochemical contents, and biological activities during the vinegar fermentation of Elaeagnus multiflora fruit. The contents of pH and reducing sugar decreased from 3.55 and 6.88 mg/mL 3.34 and 2.13 mg/mL, respectively. However the acidity increased from 0.48% to 5.48% during the vinegar fermentation. The alcohol contents increased up to a maximum value of 6.6% at 20 days, and it then decreased at the end fermentation days (2.0%). The viable numbers of acetic acid bacteria and yeasts increased from 4.32 log CFU/mL and 3.23 log CFU/mL at 10 days to 5.4 log CFU/mL and 5.5 log CFU/mL during the spontaneous fermentation, respectively. The major organic acids were acetic acid (38.84 mg/mL), lactic acid (4.92 mg/mL), and malic acid (1.51 mg/mL). The soluble phenolic and flavonoid contents increased from 0.79 mg/mL and 0.12 mg/mL of initial fermentation day to 1.22 mg/mL and 0.14 mg/mL during the spontaneous fermentation. Content of epicatechin gallate decreased from $168.1{\mu}g/mL$ at 10 days to $115.97{\mu}g/mL$. However the content of gallic acid increased from $18.52{\mu}g/mL$ to $95.07{\mu}g/mL$ during fermentation. After 60 days of the fermentation, the antioxidant and digestive enzyme inhibitory activities were 71.35% (DPPH), 79.27% (ABTS), 68.72% (${\cdot}OH$), 85.42% (${\alpha}$-glucosidase), 52.12% (${\alpha}$-amylase), and 53.66% (pancreatic lipase), respectively.

Examination of Antioxidant and Immune-enhancing Functional Substances in Fermented Sea Cucumber (발효해삼의 항산화 및 면역강화 기능성 물질의 분석)

  • Sam Woong Kim;Ga-Hee Kim;Beom Cheol Kim;Lee Yu Bin;Lee Ga Bin;Sang Wan Gal;Chul Ho Kim;Woo Young Bang;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.485-492
    • /
    • 2024
  • Sea cucumbers contain more than 50% protein in their solid content, and they also possess various bioactive substances such as saponins and mucopolysaccharides. This study analyzed the activities of various enzymes derived from Bacillus and lactic acid bacteria and determined to degrade the components of sea cucumbers. Among the analyzed strains, B. subtilis K26 showed the highest activities in protease and xylanase and relatively high activity in cellulase. Accordingly, samples of sea cucumber and water were mixed in equal proportions, sterilized, and then fermented by inoculating them with B. subtilis K26. Following this, a higher amino acid content was observed between 1.5 and 7.5 hr, a lower residual solid content in this time, and a lesser fermentation odor. The saponin content in fermented sea cucumber powder extracted with butanol was measured to be 1.12 mg/g. The chondroitin sulfate content was evaluated to be 5.11 mg/g in raw sea cucumber. The total polyphenol content, flavonoid content, and antioxidant activities were 6.95 mg gallic acid equivalent/g, 3.69 mg quercetin equivalent/g, and 3.69 mg quercetin equivalent/g in raw sea cucumber, respectively. Moreover, the DNA damage protective effect of fermented sea cucumber extract was found to be concentration-dependent, with a very strong effect at very low concentrations. Overall, we suggest that sea cucumber fermented with B. subtilis K26 has a high potential as a food for inhibiting oxidation, enhancing immunity, and improving muscle function in the human body thanks to its high free amino acid content.

Antioxidative and Biological Activites of Extracts of Sweetpotato Tips (고구마 끝순 추출물의 항산화 및 생리활성)

  • Lee, Joon-Seol;Park, Yang-Kyun;Ahn, Young-Sup;Kim, Hag-Sin;Chung, Mi-Nam;Jeong, Byeong-Choon;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.228-238
    • /
    • 2007
  • This study was conducted to increase sweetpotato utilization and to determine the vegetative value of sweetpotato tips by investigating the phenolic compounds, antioxidative effect in oil, electron donating ability, nitrite scavenging effect and ACE inhibition activities. The phenolic compounds present in sweetpotato tips are the gallic, chlorogenic, gentisic, caffeic, couramic and ferulic acid, which are 16-122 times higher compared to other vegetables such as spinach, soybean sprout, and perilla leaves. In each solvent extract, the total phenolic compounds (175.8mg/g) was composed of 55% EtOAc extraction and 39% BuOH extract, respectively. The results of induction period using the Rancimat method showed that the antioxidant activity of SP tips was higher than the tocopherol or BHT. The relative levels of each solvent extract in SP tips were as follows: EtOAc>BHT>BuOH>Tocopherol>Water>$CHCl_3$>Hexane. The peroxide value was measured every 5 days for 25 days during storage and results showed that the peroxide value, the tips, tuberous root and tocopherol were lower compared to spinach, soybean sprout and perilla leaves. Nitrite scavenging effects were excellent in sweetpotato tips, perilla leaves and soybean sprout, especially, inhibition rate of perilla leaves (72%) were superior to the others. In process of solvent extraction, activity of BuOH and water extractions were the best. ACE inhibition activity in sweetpotato tips was 1.5 times higher than in tuberous roots and $1.9{\sim}3.7$ times higher than in spinach, soybean sprout, perilla leaves.

Antioxidative and Biological Activites of Extracts of Sweetpotato Tips (고구마 끝순 추출물이 알코올 투여 흰쥐의 항산화 효소계 및 지질과산화에 미치는 영향)

  • Lee, Joon-Seol;Park, Yang-Kyun;Ahn, Young-Sup;Kim, Hag-Sin;Chung, Mi-Nam;Jeong, Byeong-Choon;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • This study was conducted to increase sweetpotato utilization and to determine the vegetative value of sweetpotato tips by investigating the phenolic compounds, antioxidative effect in oil, electron donating ability, nitrite scavenging effect and ACE inhibition activities. The phenolic compounds present in sweetpotato tips are the gallic, chlorogenic, gentisic, caffeic, couramic and ferulic acid, which are 16-122 times higher compared to other vegetables such as spinach, soybean sprout, and perilla leaves. In each solvent extract, the total phenolic compounds(175.8 mg/g) was composed of 55% EtOAc extraction and 39% BuOH extract, respectively. The results of induction period using the Rancimat method showed that the antioxidant activity of SP tips was higher than the tocopherol or BHT. The relative levels of each solvent extract in SP tips were as follows: EtOAc>BHT>BuOH>Tocopherol>Water>$CHCl_3$>Hexane. The peroxide value was measured every 5 days for 25 days during storage and results showed that the peroxide value, the tips, tuberous root and tocopherol were lower compared to spinach, soybean sprout and perilla leaves. Nitrite scavenging effects were excellent in sweetpotato tips, perilla leaves and soybean sprout, especially, inhibition rate of perilla leaves(72%) were superior to the others. In process of solvent extraction, activity of BuOH and water extractions were the best. ACE inhibition activity in sweetpotato tips was 1.5 times higher than in tuberous roots and $1.9{\sim}3.7$ times higher than in spinach, soybean sprout, perilla leaves.

Comparison of Nutritional Components and Physicochemical Properties of Small Colored Potatoes and Small Regular Potatoes (칼라꼬마감자와 일반꼬마감자의 영양성분 및 이화학적 특성)

  • Park, Sung-Jin;Kwon, Min-Soo;Shin, Kyung-Yi;Rha, Young-Ah
    • Culinary science and hospitality research
    • /
    • v.20 no.3
    • /
    • pp.80-89
    • /
    • 2014
  • This study examined the nutritional components and physicochemical properties of small colored potatoes and small regular potatoes as a natural health food source. To accomplish this, the general and antioxidative contents of small colored potatoes and small regular potatoes were measured. Total contents of carbohydrates, crude protein, crude lipid, and ash were 88.1%, 4.9%, 0.9%, and 6.4%, respectively. Small colored potatoes contained 76.5 kcal, while their total dietary fiber was 4.0%. Total proteins consisted of 17 different kinds of amino acids. Regarding their mineral contents, K was the most abundant mineral, followed by P, Mg, and Ca. Total phenol contents of the 70% ethanolic extracts of small colored potatoes were $48.2{\pm}1.2$ mg GAE/g. Total flavonoid contents of the 70% ethanolic extracts were $13.1{\pm}0.3$ mg RE/g. Overall, small colored potatoes had higher amounts of nutrients and physicochemical properties than small regular potatoes. The general nutrients and other antioxidant bioactive materials in small colored potatoes were also potential materials for good health food. It is expected that follow up studies of small colored potatoes through developing processed food and evaluation of their functional properties would provide useful information as a source of functional foods.

Quality characteristics and antioxidant capacities of Korean commercial yogurt (시판 호상 요구르트의 품질 특성과 항산화 활성)

  • Noh, Young-Hee;Jang, Ah-Soon;Pyo, Young-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.113-118
    • /
    • 2020
  • We investigated the quality characteristics and antioxidant capacities of Korean commercial yogurt. Twenty commercial yogurt samples exhibited a pH of 4.05-4.51, titratable acidity of 0.80-1.45%, viable counts of 6.65-9.39 log CFU/g, and total phenolic content of 0.71-2.92 mg gallic acid equivalent/g dry weight (dw). Lactic acid was the major organic acid detected by HPLC with UV detection, and its content was 5.4 times and 46.5 times higher than that of malic acid and citric acid, respectively. The tested commercial yogurt samples exhibited antioxidant potential (1.62-8.95 mM trolox equivalent/g, dw) measured based on scavenging activities of DPPH and ABTS radicals. The average antioxidant potentials of commercial set yogurt containing fruit syrup were significantly (p<0.05) higher than that of cream and plain yogurt. A positive linear correlation was observed between the total phenolic content and the antioxidant capacities, suggesting that phenolic components are likely to contribute significantly to the antioxidant potential of commercial yogurt.

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo;Hyung Don Kim;Jeong-Yong Park;Dong Hwi Kim;Seung-Eun Lee;Gwi Young Jang;Yun-Jeong Ji;Ji Yeon Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.

Antioxidant and Antimicrobial Activities of Quinoa (Chenopodium quinoa Willd.) Seeds Cultivated in Korea

  • Park, Jin Hwa;Lee, Yun Jin;Kim, Yeon Ho;Yoon, Ki Sun
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.195-202
    • /
    • 2017
  • The objective of this study was to investigate the antioxidant and antimicrobial properties of quinoa cultivated in Korea and to compare it with imported quinoa from the USA and Peru. The highest amount of total flavonoid contents (TFC) with 20.91 mg quercetin equivalents/100 g was measured in quinoa seed extract cultivated in Korea, while the total phenolic contents (TPC) were significantly higher in quinoa from the USA (16.28 mg gallic acid equivalents/100 g). In addition, quinoa extracts cultivated in Korea displayed a superior antioxidant ability in both, ferric reducing antioxidant power and 1,1-diphenyl-2-picrylhydrazyl values. There was a high correlation between TFC and antioxidant activity and a low correlation between TPC and antioxidant activity. The antimicrobial activity of the quinoa extracts was determined using a disc diffusion assay and optical density method. In both assays, the quinoa seed extracts did not have strong antimicrobial activity against foodborne bacteria, including Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Salmonella Typhimurium, and Campylobacter jejuni.