• Title/Summary/Keyword: Galileo system

Search Result 114, Processing Time 0.021 seconds

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

Perfomance Analysis of Positioning on Combined GPS and Galileo (GP5와 Galileo 조합에 의한 측위 성능 분석)

  • Song, Yun-Kyung;Son, Ho-Woong;Ann, Sang-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 2007
  • Nowadays, Global Navigation Satellite System(GNSS) which is the new concept of positioning system has been developed because of satisfaction human's intelligent desire and rapid science development. GNSS which is represented by GPS provides 3-Dimension positioning information not expensively in whenever, wherever. The industry of positioning information has extending civil market widely as well as military market. So GNSS is running the role of society infra structure including car and airborne navigation, civil engineering, GIS resource, telematics and LBS, and so on. As USA removes the SA(Selective Availability), GPS has monopolizing the market and other countries have been depended on GPS, absolutely. In this paper, the author developed the software for analysis of influence using next generation, Galileo system. The local analysis was performed according to positioning mode. And GPS/Galileo combined system can implement positioning in the worst mask environment like urban cannon.

  • PDF

Performance Analysis of Assisted-Galileo Signal Acquisition Under Weak Signal Environment (약 신호 환경에서의 Assisted-Galileo 신호 획득 성능 분석)

  • Lim, Jeong-Min;Park, Ji-Won;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.646-652
    • /
    • 2013
  • EU's Galileo project is a market-based GNSS (Global Navigation Satellite System) that is under development. It is expected that Galileo will provide the positioning services based on new technologies in 2020s. Because Galileo E1 signal for OS (Open Service) shares the same center frequency with GPS L1 C/A signal, CBOC (Composite Binary Offset Carrier) modulation scheme is used in the E1 signal to guarantee interoperability between two systems. With E1 signal consisting of a data channel and a pilot channel at the same frequency band, there exist several options in designing signal acquisition for Assisted-Galileo receivers. Furthermore, compared to SNR worksheet of Assisted-GPS, some factors should be examined in Assisted-Galileo due to different correlation profile and code length of E1 signal. This paper presents SNR worksheets of Galileo E1 signals in E1-B and E1-C channel. Three implementation losses that are quite different from GPS are mainly analyzed in establishing SNR worksheets. In the worksheet, hybrid long integration of 1.5s is considered to acquire weak signal less than -150dBm. Simulation results show that the final SNR of E1-B signal with -150dBm is 19.4dB and that of E1-C signal is 25.2dB. Comparison of relative computation shows that E1-B channel is more profitable to acquire the strongest signal in weak signal environment. With information from the first satellite signal acquisition, fast acquisition of the weak signal around -155dBm can be performed with E1-C signal in the subsequent satellites.

Current Status and Development Plan of Global Navigation Satellite System (위성항법시스템 운영 현황 및 개발 계획)

  • Ha, Ji-Hyun;Chun, Se-Bum
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • In this paper, we explained status and development trend of GNSS (Global Navigation Satellite System): GPS (Global Satellite System) of US, GLONASS (Global Navigation Satellite System) of Russia, Galileo of EU, Beidou/Compass of China, and QZSS (Quasi-Zenith Satellite System) of Japan). System construction and operation status of five GNSS systems were summarized. In addition, development plan and modernization of these systems were explained.

  • PDF

A Tracking Scheme using Correlation Value at Advanced Offset Range in Galileo BOC(1,1) Signal (Galileo BOC(1,1)에서 이른 상관시간 옵셋 영역의 상관 값을 이용한 추적기법)

  • Yoo, Seung-Soo;Kim, Sang-Hun;Yoon, Seok-Ho;Song, Iick-Ho;Kim, Jun-Tae;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.86-93
    • /
    • 2008
  • The Galileo system, a global navigation satellite system(GNSS) developed by E.U., uses the direct sequence/spread spectrum(DS/SS) modulation. A DS/SS-based system performs a fine synchronization between the received and locally generated spreading signals, via attacking process. In the absence of multipath signals, using the symmetric characteristic of the correlation function, the delay lock loop with the early minus late discriminator(EL-DLL) offers the best performance in tracking. However, in the presence of multipath signals, the symmetry of the correlation function could be lost, causing a tracking bias. In this paper, we observe that the correlation values in the advanced offset range remain almost unchanged, due to the multipath signals being received later than a line-of-sight signal. Based on this observation, we propose a novel tracking scheme for a Galileo BOC(1,1) system.

Regional Integrity Analysis using modernized GPS, Galileo and SBAS

  • Han, Sang-Sul;Shin, Dae-Sik;Cho, Jong-Chul;Park, Chan-Sik;Jun, Hyang-Sik;Nam, Gi-Wook;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.417-421
    • /
    • 2006
  • ICAO defines performance requirements of navigation system such as accuracy, integrity, continuity and availability. The integrity is most significant performance requirement in aviation where safety of life is crucial. Many researches on this topic anticipate that GPS with SBAS or Galileo can meet APV requirements and GPS with GBAS or Galileo with GBAS will meet CAT II and III requirements. These performance expectations are based on global analysis. In this paper regional integrity analysis in Korea using various combinations of modernized GPS, Galileo and SBAS is given. The simulation results show that CAT I requirement can be met using modernized GPS and Galileo alone, however, CAT II and III are not met even augmenting SBAS because of VPL. A more efficient augmentation such as GBAS which can reduce VPL dramatically is required to meet CAT II and III in Korean region.

  • PDF

Regional Ionosphere Modeling using GPS, Galileo, and QZSS (GPS, Galileo, QZSS를 이용한 지역 전리층 모델링)

  • Byung-Kyu Choi;Dong-Hyo Sohn;Junseok Hong;Jong-Kyun Chung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.159-165
    • /
    • 2024
  • The Global Navigation Satellite System (GNSS) has been used as a tool to accurately extract the Total Electron Content (TEC) in the ionosphere. The multi-GNSS (GPS, GLONASS, BeiDou, Galileo, and QZSS) constellations bring new opportunities for ionospheric research. In this study, we develop a regional ionospheric TEC model using GPS, Galileo, and QZSS measurements. To develop an ionospheric model covering the Asia-Oceania region, we select 13 International GNSS Service (IGS) stations. The ionospheric model applies the spherical harmonic expansion method and has a spatial resolution of 2.5°×2.5° and a temporal resolution of one hour. GPS TEC, Galileo TEC, and QZSS TEC are investigated from January 1 to January 31, 2024. Different TEC values are in good agreement with each other. In addition, we compare the QZSS(J07) TEC and the Center for Orbit Determination in Europe (CODE) Global Ionosphere Map (GIM) TEC. The results show that the QZSS TEC estimated in the study coincides closely with the CODE GIM TEC.

Analysis of Influence according to Positioning Mode using Next Generation GNSS (차세대 GNSS의 측위 기법별 영향 분석)

  • Lee Jae-One
    • Spatial Information Research
    • /
    • v.13 no.3 s.34
    • /
    • pp.283-296
    • /
    • 2005
  • Nowadays, Global Navigation Satellite System(GNSS) which is the new concept of positioning system has been developed because of satisfaction human's intelligent desire and rapid science development. GNSS which is represented by GPS provides 3-Dimension positioning information not expensively in whenever, wherever. The industry of positioning information has extending civil market widely as well as military market. So GNSS is running the role of society infra structure including car and airborne navigation, civil engineering, GIS resource, telematics and LBS, and so on. As USA removes the SA(Selective Availability), GPS has monopolizing the market and other countries have been depended on GPS, absolutely. In this paper, the author developed the software for analysis of influence using next generation, Galileo system. The local analysis was performed according to positioning mode. And GPS/Galileo combined system can implement positioning in the worst mask environment like urban cannon.

  • PDF

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

RF performance Analysis for Galileo Receiver Design (갈릴레오 수신기 설계를 위한 RF 성능 분석에 관한 연구)

  • Chang, Sang-Hyun;Lee, Il-Kyoo;Park, Dong-Pil;Lee, Sang-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.58-62
    • /
    • 2010
  • This paper presents the effects of RF performance parameters on the Galileo receiver design via simulation after reviewing the requirements of the Galileo receiver structure. At first, we considered the general requirements, structure and characteristics of the Galileo system. Then we designed the Galileo receiver focused on performance requirement of 16 dB C/N which is equal to 15 % Error Vector Magnitude(EVM) by using Advanced Design System(ADS) simulation program. In order to verify the function of Automatic Gain Control(AGC)), we measured the IF output power level by changing the input power level at the front - end of the receiver. We analyzed the performance degradation due to phase noise variations of Local Oscillator(LO) in the Galileo receiver through EVM when the minimum sensitivity level of -127 dBm is applied at the receiver. We also analyzed the performance degradation according to variable Analog-to-Digital Converter(ADC) bits within the Dynamic range, -92 ~ -139 dBm, which has been defined by gain range (-2.5 ~ +42.5 dB) in the AGC operation. The results clearly show that the performance of the Galileo receiver can be improved by increasing ADC bits and reducing Phase Noise of LO.