• Title/Summary/Keyword: Gait rehabilitation

Search Result 738, Processing Time 0.03 seconds

Effect of Robot-Assisted Wearable Exoskeleton on Gait Speed of Post-Stroke Patients: A Systematic Review and Meta-Analysis of a Randomized Controlled Trials

  • Chankyu Kim;Hyun-Joong Kim
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.471-477
    • /
    • 2022
  • Objective: The greatest motor impairment after stroke is a decreased ability to walk. Most stroke patients achieve independent gait, but approximately 70% do not reach normal speed, making it difficult to reach a standard of daily living. Therefore, a wearable exoskeleton is recommended for optimal independent gait because different residual disorders hinder motor function after stroke. This review synthesized the effect on gait speed in randomized controlled trials (RCTs) in which gait training using a wearable exoskeleton was performed on post-stroke patients for qualitative and quantitative analysis. Design: A systematic review and meta-analysis of a randomized controlled trials Methods: RCTs using wearable exoskeletons in robotic rehabilitation of post-stroke patients were extracted from an international electronic database. For quality assessment and quantitative analysis, RevMan 5.4 was used. Quantitative analysis was calculated as the standardized mean difference (SMD) and presented as a random effect model. Results: Five studies involving 197 post-stroke patients were included in this review. As a result of the analysis using a random effect model, gait training using a wearable exoskeleton in post-stroke patients showed a significant improvement in gait speed compared to the non-wearing exoskeleton (SMD=1.15, 95% confidence interval: 0.52 to 1.78). Conclusions: This study concluded that a wearable exoskeleton was more effective than conventional gait training in improving the gait speed in post-stroke patients.

Effect of the Treadmill Gait Training Program Combined with the Thoracic Mobility Exercise on Gait and Balance in Stroke Patients: A Preliminary Randomized, Controlled Study (등뼈가동운동과 결합한 트레드밀 보행 훈련 프로그램이 뇌졸중 환자의 보행 기능 및 균형 능력에 미치는 효과: 무작위 대조 예비연구)

  • Min-Woo, Yum;Sang-Young, Park;Tae-Wu, Kim;Kyoung-Wook, Cho;Yong-Jun, Cha
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.4
    • /
    • pp.93-101
    • /
    • 2022
  • PURPOSE: This study sought to investigate the effects of treadmill gait training combined with a thoracic mobility exercise on gait and balance in patients with stroke. METHODS: In this single-blinded, randomized, controlled, comparative study, a total of 20 patients at a rehabilitation hospital who had suffered a hemiplegic stroke were randomly assigned to the experimental group (treadmill gait training combined with a thoracic mobility exercise, n = 11) or control group (treadmill gait training without the thoracic mobility exercise, n = 9). All the participants underwent comprehensive rehabilitation therapy (5 × /week for 4 weeks). Additionally, the experimental group underwent 20 min of treadmill gait training combined with 10 min of a thoracic mobility exercise (3 × / week for 4 weeks) and the control group underwent the former but not the latter. Gait and balance were measured before and after the 4-week training. RESULTS: Significant improvements were observed in the 10-m walking test (10 MWT), timed up-and-go (TUG) test, center of pressure (COP) velocity, and COP length in the experimental group (p < .05). This group also showed a larger decrease in the 10 MWT and COP velocity than the control group (10 MWT, -3.02 sec vs. -1.68 sec, p < .05; COP velocity, -.07 mm/sec vs. .08 mm/sec, p < .05). CONCLUSION: Treadmill gait training, combined with the thoracic mobility exercise, could be effective in improving the gait and balance of stroke patients. It could also be more effective in improving walking speed and static balance than the treadmill gait training alone.

Effects of mobile texting and gaming on gait with obstructions under different illumination levels

  • Cha, Jaeyun;Kim, Hyunjin;Park, Jaemyoung;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2015
  • Objective: This study was conducted to test the effects of mobile texting and gaming on gait with obstructions under different illumination levels. Design: Cross-sectional study. Methods: Twelve healthy adults aged 20 to 36 years (mean 23.5 years) were tested under six different conditions. All participants used touchscreen smartphones. Testing conditions included: 1) Walking with an obstruction under a bright illumination level; 2) walking with an obstruction with a low level of illumination; 3) walking with an obstruction while texting under a bright illumination level; 4) walking with an obstruction while texting with a low level of illumination; 5) walking with an obstruction while gaming under a bright illumination level; and 6) walking with an obstruction while gaming with a low level of illumination. All participants were asked to text the Korean national anthem by their own phone and play Temple Run 2 using an iPhone 5. Gait variances were measured over a distance of 3 m, and the mean value after three trials was used. A gait analyzer was used to measure the data. Results: Compared to normal gait with obstruction, gait speed, step length, stride length, step time, stride time, cadence while texting and gaming showed significant differences (p<0.05). Differences between the illumination levels included gait speed, step length, stride length, and step time (p<0.05) with no significant differences in stride time and cadence. Conclusions: Dual-tasking using a smartphone under low levels of illumination lowers the quality of gait with obstructions.

Study on Efficacy of Gait Training for Hemiplegia Patients Using Lower-Limb Wearable Robot (착용형 하지 로봇을 이용한 편마비 보행 재활 훈련 효과에 관한 연구)

  • Ji, Younghoon;Yun, Deokwon;Jang, Hyeyoun;Lee, Dongbock;Khan, Abdul Manan;Kim, Sol;Kim, Mijung;Han, Jungsoo;Han, Changsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.879-883
    • /
    • 2015
  • Conventional gait rehabilitation requires at least three therapists in a traditional rehabilitation training program. Several robots have been developed to reduce human burden and increase rehabilitation efficacy. In this study, we present a lower-limb wearable robot (WA-H) for gait rehabilitation of hemiplegia patients, and propose a protocol of 12 weeks gait rehabilitation training program using WA-H. To identify the efficacy of the robot and protocols, we conducted a clinical study with two actual hemiplegia patients and observed a chronological change of ambulation ability through four assessments. We discovered the progression of results by 6 minute walking test, TUGT (Timed Up and Go Test), SPPB (Short Physical Performance Battery), BBS (Berg Balance Test), and Fugl-Meyer score. The torques generated in the normal side and paralyzed side of the patient became similar, indicating rehabilitation. The result also showed the walking of the paralysis patient improved and imbalance motion had considerable improved performance.

A Study of Gait and Gait Analysis Techniques (보행과 보행분석법에 관한 연구)

  • Bae Sung-Soo;Lee Jin-Hee;Yoon Chang-Goo
    • The Journal of Korean Physical Therapy
    • /
    • v.8 no.1
    • /
    • pp.49-64
    • /
    • 1996
  • The technology of gait analysis is moving rapidly. Human gait is very complex, and a through understanding of it demands with the basic principles of biomechanics and the technology used to measure gait. Some professionals reluctance to use gait analysis may be due to the amount of time and effort necessary to accomplish this and the necessity for teamwork among the disciplines involved. Any form of observational gait analysis has limited precision and is more descriptive than quantative. The techniques of 3-D kinetic and kinematic analysis can provide a detailed biomechanical description of normal and pathological gait. This article review gait characteristics and procedures that are available for gait analysis. We are certain that, given the steady advance of technology and our continued efforts to document the benefits of that technology. gait analysis will soon be a routine part of the evaluation of both the elite athlete and the physically impaired adult or child.

  • PDF

The Relevance Between Gross Motor Function Measurement (GMFM) and the Spatiotemporal Parameters of Gait in Children With Cerebral Palsy (뇌성마비 아동에서 대동작기능평가(GMFM)와 보행의 시공간적 변수와의 관계)

  • Lee, Jung-Lim;Cho, Sang-Hyun;Kwon, Oh-Yun;Lee, Young-Hui
    • Physical Therapy Korea
    • /
    • v.8 no.1
    • /
    • pp.20-34
    • /
    • 2001
  • This paper presents the relevance between GMFM and the spatiotemporal parameters of gait in children with cerebral palsy. Twenty-one children ($73.11{\pm}30.06$ months) with cerebral palsy participated in this study. GMFM was performed and spatiotemporal parameters of gait were measured by foot print gait analysis. A correlation analysis was used to investigate the correlation between GMFM scores and spatiotemporal parameters of gait. A linear regression analysis was employed to find how much each gait spatiotemporal parameters could be predicted from GMFM scores. The total GMFM scores was significantly correlated with walking speed, cadence, and stride length. Dimensions D (standing) and E (walking, running, and jumping) were more significantly correlated with gait spatiotemporal parameters than dimensions A (lying and rolling), B (sitting), and C (crawling and kneeling). The GMFM scores were useful for predicting spatiotemporal parameters. However, it is difficult to predict the status of gait development using GMFM scores because GMFM scores and gait spatiotemporal parameters are only measured as quantities not qualities. In the field, it is easily found that many children with cerebral palsy are unable to walk in any way. Consequently, gait analysis cannot be performed in many cases. Therefore, it is more reasonable to investigate the influence of GMFM on spatiotemporal parameters, rather than vice versa.

  • PDF

Quantitative Rehabilitation Extent Monitoring for Unilateral Lower Extremity Disabled Patients using Simulated Gait Pattern Analysis (재활환자 모의보행 패턴분석을 이용한 하지 편측 장애자의 정량적 재활상태 모니터링)

  • Moon, Dong-Jun;Kim, Ju-Young;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.227-233
    • /
    • 2014
  • In this paper, to quantitatively evaluate the degree of rehabilitation for the disabled of unilateral lower extremity, we compared the EMG pattern of normal and simulated abnormal gait. The EMG signal was measured at a rate of 1 kHz on the quadriceps and biceps femoris, the pressure sensor was attached to the sole in order to distinguish the gait cycle. Integrated EMG (IEMG) was obtained by the gait cycle, and classified four patterns that were the normal gait pattern, amplitude decrease pattern, reversed pattern, and irregular pattern. For comparison of the patterns, a curve fitting was performed using the trigonometric functions. The result of curve fitting, the method using a variable A that corresponds to the amplitude of the regression curve was able to distinguish the reverse pattern and remaining pattern. The coefficient of determination ($R^2$) representing coincidence of the pattern of the regression curve and EMG was confirmed the biggest value at the normal gait. Therefore, the degree of normal gait can be confirmed using the coefficient of determination. This results show that it is possible to quantitatively confirm the degree of unilateral lower extremity disabled rehabilitation, and it will be contributed to the study of efficient rehabilitation methods by objective analysis.

Effects of Functional Electrical Stimulation During Gait Training on Gait, Balance, and Lower Extremity Function in Chronic Stroke Patients

  • Min-Ju Nam;Ye-Ji Kim;Ming-Yu Tian;Myoung-Kwon Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.3
    • /
    • pp.29-36
    • /
    • 2024
  • PURPOSE: To examine the effects of functional electrical stimulation during gait training on the gait, balance, and lower extremity function of chronic stroke patients. METHODS: A total of 20 subjects diagnosed with chronic stroke were randomly divided into experimental group that performed functional electrical stimulation during gait training, and a control group applied with only functional electrical stimulation, with 10 subjects in each group. RESULTS: In the Berg Balance Scale, the experimental group ranged from 19.80 ± 4.93 to 24.30 ± 6.63 and the control group ranged from 39.40 ± 12.72 to 40.10 ± 13.18, which showed significant differences (p < .05), and there was a significant difference between the groups (p < .05). In 10 Meter Walk Test, the experimental group ranged from 28.70 ± 4.03 to 26.42 ± 3.56, which showed significant differences (p < .05), and there was a significant difference between the groups (p > .05). In Fugl-Meyer Assessment Scale-Lower extremity, the experimental group ranged from 22.70 ± 4.49 to 25.30 ± 4.39 and the control group ranged from 21.10 ± 5.34 to 25.30 ± 4.49, which showed significant differences (p < .05), and there was no significant difference between the groups (p > .05). CONCLUSION: Functional electrical stimulation during gait training may be suggested as an effective program for improving gait, balance, and lower extremity function of stroke patients. Therefore, functional electrical stimulation during gait may be recommended as part of the rehabilitation program for chronic stroke patients.

Relationships Between the Transfemoral Socket Interface Pressure and Myoelectric Signal of Residual Limb During Gait

  • Hong, J.H.;Lee, J.Y.;Chu, J.U.;Lee, J.Y.;Mun, M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1070-1073
    • /
    • 2002
  • The biomechanical interaction between the stump and the prosthetic socket is critically important to achieve close-to-normal ambulation. Many investigators suggested that the pressure changes during gait of transfemoral amputees are closely related to the prosthetic alignment, the socket shape, the stump size, and the residual muscle activity. The effects of the prosthetic alignment, the socket shape, and the stump size on the interface pressure were investigated previously. However, there is no report how the residual muscle activities in the transfemoral stump affect the socket interface pressure characteristics during gait. Since designs of socket fur lower limb amputees need to consider the socket interface pressure characteristics, the interface pressure patterns by the residual muscle activities during gait should be investigated. In this study, myoelectric signals (MES) and socket interface pressure in residual limb of transfemoral amputees were measured during the stance and swing phases of gait. For the purpose, specially designed quadrilateral sockets that MES electrodes could be instrumented were fabricated. A total of two transfemoral amputees were participated in the experiments. The measured temporal MES amplitude and interface pressure in knee flexor (biceps femoris) and extensor (rectus femoris) had significant correlations (P < 0.05). Based on the test results, It was suggested that the residual muscle activity of transfemoral amputees stump is an important factor affecting socket pressure changes during walk.

  • PDF

A Clinical Study of a Stroke Patient with a Worsened Gait Pattern after Discontinuing Rehabilitation (재활치료 중단 후 보행 양상이 다시 악화된 뇌졸중 환자 1례에 관한 고찰)

  • Kim, Cheol-hyun;Moon, Yeon-ju
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.2
    • /
    • pp.118-124
    • /
    • 2017
  • Objective: This study describes the case of a patient with a left basal ganglia (BG) infarct who had made almost a complete recovery upon discharge from the hospital in 2014 but who was re-admitted after 31 months with a worsened hemiplegic gait. Methods: The patient had undergone no rehabilitation treatment in the 31 months since his discharge. When the patient was re-admitted to our hospital in 2017, stance and gait data were collected on the patient using a treadmill gait analysis system. In addition, the patient underwent a manual muscle test (MMT) evaluation, and his Motricity index (MI) and modified Barthel index (MBI) scores were recorded. After rehabilitation for one month, the patient was reassessed, and the results were compared to those on the day of re-admission and those recorded in 2014. Results: Compared to the 2014 evaluation results, the patient's stance parameters and gait parameters had worsened at re-admission. However, there was no significant change in the patient's MMT grade or MI and MBI scores in comparison to the results of the 2014 evaluation. After one month of rehabilitation, the patient was re-evaluated again, but there was no significant change in comparison to the evaluation results at re-admission. Conclusion: Some of the stroke patients who have passed six months since the onset of their stroke may require ongoing rehabilitation although the functions of them is almost recovered. Because there is a possibility that recovered functions get worse again without any rehabilitation for a long time. And once the recovered functions get worse, re-recovery of them is not easy.