• 제목/요약/키워드: Gait patterns

검색결과 175건 처리시간 0.028초

12주간 복합운동이 여성 노인의 족저압력에 미치는 영향 (Effects of 12-Week Complex Training Program on Foot-Pressure Patterns of the Elderly Women)

  • 이중숙;양정옥;이범진;박상묵
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.117-126
    • /
    • 2009
  • 이 연구는 12주간 복합운동이 여성 노인의 보행동작 시 발의 압력분포에 미치는 영향을 알아보기 위하여 규칙적으로 운동에 참여하지 않는 65세 이상의 노인여성 15명을 대상으로 하였다. 연구대상에게 보행속도 2.4km/h로 직선보행동작과 $45^{\circ}$ 방향전환보행동작을 실시하게 한 후 보행 시 족저압력분포를 측정한 후 평균 족저압력과 최대 족저압력을 분석한 결과 다음과 같은 결론을 얻었다. 첫째, 12주간의 복합운동이 직선보행동작과 $45^{\circ}$ 방향전환 보행동작 시 평균 족저압력을 유의하게 감소시켜 효과적인 보행동작을 수행하는데 도움을 주는 것으로 분석되었다. 둘째, 12주간의 복합운동이 직선보행동작과 $45^{\circ}$ 방향전환 보행동작 시 최대 족저압력을 유의하게 감소시켜 효과적인 보행동작을 수행할 수 있도록 도움을 주는 것으로 분석되었다. 셋째, 12주 복합운동 전 후의 족저압력분포와 압력중심 이동곡선의 경로 분석결과 복합운동 전보다 복합운동 후의 족저압력분포가 보다 폭넓게 낮은 족저압력분포를 나타낸 것으로 관찰되었으며, 압력중심 이동곡선도 복합운동 전보다 복합운동 후 안정적인 곡선을 나타내는 것으로 분석되었다.

정상인의 내림 경사로 보행 시 경사각에 따른 하지 관절의 삼차원적 동작 분석 (The 3-D Motion Analysis of Kinematic Variety on Lower Extremities During Ramp Descent at Different Inclinations)

  • 한진태;김식현;배성수
    • 한국전문물리치료학회지
    • /
    • 제13권2호
    • /
    • pp.16-25
    • /
    • 2006
  • The aim of this study was to investigate the kinematics of young adults during descent ramp climbing at different inclinations. Twenty-three subjects descended four steps at four different inclinations (level, $-8^{\circ}$, $-16^{\circ}$, $-24^{\circ}$). The 3-D kinematics were measured by a camera-based Falcon System. The data were analyzed using one-way ANOVA and the Student-Newman-Keuls test. The kinematics of descent ramp walking could be clearly distinguished from the kinematics of level walking. On a sagittal plane, the ankle joint was more plantar flexed at initial contact with $-16^{\circ}/-24^{\circ}$ inclination, was decreased in the toe off position with all inclinations (p<.001),and was decreased at maximum plantar flexion during the swing phase (p<.001). The knee joint was more flexed at initial contact with the $-24^{\circ}$ inclination (p<.001), was more flexed in the toe off position with all inclinations (p<.001), and was more flexed at minimum flexion during stance phase and at maximum flexion during swing phase with $-16^{\circ}$, $-24^{\circ}$ inclination (p<.001). The hip joint was more flexed in the toe off position with $-16^{\circ}$, $-24^{\circ}$ inclination and was deceased at maximum extension during stance phase with $-16^{\circ}$, $-24^{\circ}$ inclination (p<.05). In the frontal plane, the ankle joint was more everted at maximum eversion during stance phase with $-16^{\circ}/-24^{\circ}$ inclination (p<.01) and was decreased at maximum inversion during swing phase with $-16^{\circ}$, $-24^{\circ}$ inclination (p<.01). The knee joint was more increased at maximum varus during stance phase with $-16^{\circ}/-24^{\circ}$ inclination (p<.001). The hip joint was deceased at maximum adduction during stance phase with $-24^{\circ}$ inclination (p<.05). In a horizontal plane, only the knee joint was increased at maximum internal rotation during stance phase with $-24^{\circ}$ inclination (p<.05). In descent ramp walking, the different gait patterns occurred at an inclination of over $16^{\circ}$ on the descending ramp in the sagittal and frontal planes. These results suggest that there is a certain inclination angle or angular range where subjects do switch between level walking and descent ramp walking gait patterns.

  • PDF

Pressure Distribution in Stump/Socket Interface in Response to Socket Flexion Angle Changes in Trans-Tibial Prostheses With Silicone Liner

  • Kang, Pil;Kim, Jang-Hwan;Roh, Jung-Suk
    • 한국전문물리치료학회지
    • /
    • 제13권4호
    • /
    • pp.71-78
    • /
    • 2006
  • This study examined the effects of socket flexion angle in trans-tibial prosthesis on stump/socket interface pressure. Ten trans-tibial amputees voluntarily participated in this study. F-socket system was used to measure static and dynamic pressure in stump/socket interface. The pressure was measured at anterior area (proximal, middle, and distal) and posterior area (proximal, middle, and distal) in different socket flexion angles ($5^{\circ}$, $0^{\circ}$, and $10^{\circ}$). Paired t-test was used to compare pressure differences in conventional socket flexion angle of $5^{\circ}$ with pressures in socket flexion angles of $0^{\circ}$ and $10^{\circ}$ (${\alpha}$=.05). Mean pressure during standing in socket flexion angle of $10^{\circ}$ decreased significantly in anterior middle area (19.7%), posterior proximal area (10.4%), and posterior distal area (16.3%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (19.3%) and decreased significantly in anterior distal area (19.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure during stance phase in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (19.6%) and increased significantly in anterior distal area (8.2%) compared with socket flexion angle of $5^{\circ}$. Peak pressure during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.0%) compared with socket flexion angle of $5^{\circ}$ and peak pressure during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior proximal area (22.7%) compared with socket flexion angle of $5^{\circ}$. Mean pressure over 80% of peak pressure ($MP_{80+}$) during gait in socket flexion angle of $0^{\circ}$ increased significantly in anterior proximal area (23.9%) and decreased significantly in anterior distal area (22.5%) compared with socket flexion angle of $5^{\circ}$. $MP_{80+}$ during gait in socket flexion angle of $10^{\circ}$ decreased significantly in anterior distal area (34.1%) compared with socket flexion angle of $5^{\circ}$. Asymmetrical pressure change patterns in socket flexion angle of $0^{\circ}$ and $10^{\circ}$ were revealed in anterior proximal and distal region compared with socket flexion angle of $5^{\circ}$. To provide comfortable and safe socket for trans-tibial amputee, socket flexion angle must be considered.

  • PDF

Comparisons of Vastus Medialis and Vastus Lateralis Muscle Activities according to Different Heights during Drop Landing in Flatfooted Adults

  • Chang, Jong Sung
    • The Journal of Korean Physical Therapy
    • /
    • 제32권5호
    • /
    • pp.302-306
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate comparisons of vastus medialis (VMO) and vastus lateralis (VL) muscle activities according to different heights during drop landing in flatfooted adults. Methods: Fifteen subjects with a flat foot arch and 15 subjects with a normal feet arch were participated. Subjects performed a double limb drop landing task from 20, 40, and 60 cm heights. Surface electromyography was used to measure the muscle activities of the VMO and VL during drop landing. Results: There were significant differences of muscle activities in the VMO, VL, and the VMO and VL ratio between groups. The electromyography values of VMO, VL, and the VMO and VL ratio in the normal group were significantly greater than in the flat foot group, and muscle activities and the VMO and VL ratio significantly increased with landing heights in the both groups. Conclusion: Our results indicated that muscle activity patterns of VOM and VL in the flat foot group were lower at heights than in the normal group, so calf tightness was negative effects on balance and gait ability, so assessment of muscle activation patterns in the knee extensors should be considered during exercise and treatment of flat feet.

생체 임피던스를 이용한 인체 하지운동 출을 위한 최적 전극위치 선정 (Optimal Electrode Selection for Detection of Human Leg Movement Using Bio-Impedance)

  • 송철규;윤대영;이동헌;김승찬;김덕원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권8호
    • /
    • pp.506-509
    • /
    • 2003
  • This paper describes the possibility of analyzing gait pattern from the changes of the lower leg electrical impedance. This impedance was measured by the four-electrode method. Two current electrodes were applied to the thigh, knee, and foot., and two potential electrodes were applied to the lateral, medial, and posterior position of human leg. The correlation coefficients of the joint angle and the impedance change from human leg movement was obtained using a electrogoniometer and 4ch impedance measurement system developed in this study. We found the optimal electrode position for knee and ankle joint movements based on high correlation coefficient, least interference, and maximum magnitude of impedance change. The correlation coefficients of the ankle, knee, and the hip movements were -0.913, 0.984 and 0.823, respectively. From such features of the human leg impedance, it has been made clear that different movement patterns exhibit different impedance patterns and impedance level. This system showed feasibility that lower leg movement could be easily measured by impedance measurement system with a few skin-electrodes.

젊은 아시아인과 코카시아 여성의 보행 패턴 비교 (A Comparison of Gait Patterns in Young Asian and Caucasian Women)

  • 권순정
    • 한국전문물리치료학회지
    • /
    • 제5권4호
    • /
    • pp.30-40
    • /
    • 1998
  • 이 연구의 목적은 젊은 아시아인과 코카시아 여성의 보행패턴 중 보폭시간(step time) 과 보폭 (step length)을 비교하고 두 집단의 골반넓이와 보폭과 상관관계가 있는지 알아보는 것이다. 연구대상자는 15명의 아시아인과 15명의 코카시아 여성이었으며 나이는 23세에서 35세 범위에 있었다. 보행분석을 위해서는 GAITRite System을 사용하였으며 분석방법으로는 인종(아시아인대 코카시아인)과 신체부위(좌측, 우측)를 요인으로 하여 반복측정에 의한 분산분석을 하였다. 아시아인 여성보다 코카시아인 여성의 보폭, 다리길이, 골반 넓이가 통계학적으로 유의하게 높았고 왼쪽 다리의 걸음과 오른쪽 다리의 걸음에 있어서는 통계학적으로 유의한 차이가 없었다. 그리고 보폭시간, 속도, 걸음수(cadence)에 있어서도 두 여성 인종간에 통계학적으로 유의한 차이가 없었다. 이러한 결과는 보행변수 중에서 걸음수나 속도와 같은 시간변수에 았어서는 아시아인 여성과 코카시아인 여성간에 차이가 없음을 의미한다.

  • PDF

Experimental Study on Modifiable Walking Pattern Generation for Handling Infeasible Navigational Commands

  • Hong, Young-Dae;Lee, Bumjoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2368-2375
    • /
    • 2015
  • To accommodate various navigational commands, a humanoid should be able to change its walking motion in real time. Using the modifiable walking pattern generation (MWPG) algorithm, a humanoid can handle dynamic walking commands by changing its walking period, step length, and direction independently. If the humanoid is given a command to perform an infeasible movement, the algorithm substitutes the infeasible command with a feasible one using binary search. The feasible navigational command is subsequently translated into the desired center-of-mass (CM) state. Every sample time CM reference is generated using a zero-moment-point (ZMP) variation scheme. Based on this algorithm, various complex walking patterns can be generated, including backward and sideways walking, without detailed consideration of the feasibility of the navigational commands. In a previous study, the effectiveness of the MWPG algorithm was verified by dynamic simulation. This paper presents experimental results obtained using the small-sized humanoid robot platform DARwIn-OP.

바이오센서

  • 홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권2호
    • /
    • pp.109-111
    • /
    • 1989
  • An electrical stimulator was designed to induce locomotion for paraplegic patients caused by central nervous system injury. Optimal stimulus parameters, which can minimize muscle fatigue and can achieve effective muscle contraction were determined in slow and fast muscles in Sprague-Dawley rats. Stimulus patterns of our stimulator were designed to simulate electromyographic activity monitored during locomotion of normal subjects. Muscle types of the lower extremity were classified according to their mechanical property of contraction, which are slow muscle (msoleus m.) and fast muscle (medial gastrocneminus m., rectus femoris m., vastus lateralis m.). Optimal parameters of electrical stimulation for slow muscles were 20 Hz, 0.2 ms square pulse. For fast muscle, 40 Hz, 0.3 ms square pulse was optimal to produce repeated contraction. Higher stimulus intensity was required when synergistic muscles were stimulated simultaneously than when they were stimulated individually. Electrical stimulation for each muscle was designed to generate bipedal locomotion, so that individual muscles alternate contraction and relaxation to simulate stance and swing phases. Portable electrical stimulator with 16 channels built in microprocessor was constructed and applied to paraplegic patients due to lumbar cord injury. The electrical stimulator restored partially gait function in paraplegic patients.

  • PDF

Modifiable Walking Pattern Generation Handling Infeasible Navigational Commands for Humanoid Robots

  • Lee, Bum-Joo;Kim, Kab Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.344-351
    • /
    • 2014
  • In order to accomplish complex navigational commands, humanoid robot should be able to modify its walking period, step length and direction independently. In this paper, a novel walking pattern generation algorithm is proposed to satisfy these requirements. Modification of the walking pattern can be considered as a transition between two periodic walking patterns, which follows each navigational command. By assuming the robot as a linear inverted pendulum, the equations of motion between ZMP(Zero Moment Point) and CM(Center of Mass) state is easily derived and analyzed. After navigational command is translated into the desired CM state, corresponding CM motion is generated to achieve the desired state by using simple ZMP functions. Moreover, when the command is not feasible, feasible command is alternated by using binary search algorithm. Subsequently, corresponding CM motion is generated. The effectiveness of the proposed algorithm is verified by computer simulation.

Kinematic Analysis of Head and Trunk Movements of Young Adults while Climbing Stairs or a Ramp

  • Han, Jin-Tae
    • The Journal of Korean Physical Therapy
    • /
    • 제22권6호
    • /
    • pp.21-28
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the kinematic adaptation of head and trunk to ascend stairs and a ramp. Subjects were healthy young adults. Three-dimensional kinematic patterns of head and trunk movements were examined during stair climbing and steeper ramp climbing. Methods: Fourteen young subjects with no history of chronic or acute musculoskeletal, cardiovascular or respiratory disorders took part in this experiment. Kinematic data were collected using a 6 camera Vicon system (Oxford Metrix, Oxford, England). Repeated measures ANOVA analyses were used to investigate the effect of gait mode on kinematics of the head and trunk. Results: The angle of the trunk while ascending stairs or a ramp was modified in three human planes (p<0.05). The angle of head and neck during the ascending of stairs or a ramp was not changed in the sagittal plane but was changed in the frontal and transverse planes (p<0.05). Conclusion: This study describes and discusses some basic kinematic mechanisms underlying the pattern of head and trunk changes during stair and ramp climbing and showed that postural adaptation of the head and trunk is necessary to maintain balance.