• 제목/요약/키워드: Gait Pattern

검색결과 294건 처리시간 0.024초

불완전 척수손상 후의 자동보행훈련 (Auto-Walking Training After Incomplete Spinal Cord Injury)

  • 정재훈
    • 한국전문물리치료학회지
    • /
    • 제10권3호
    • /
    • pp.81-90
    • /
    • 2003
  • This study was conducted to assess the effects of the gait training method in incomplete spinal cord injured persons using an auto-walking machine. Persons with incomplete spinal cord injury level C or D on the American Spinal Injury Association impairment scale participated for eight weeks in an auto-walking training program. The gait training program was carried out for 15 minutes, three times per day for 8 weeks with an auto-walking machine. The foot rests of the auto-walking machine can be moved forward, downward, backward and upward to make the gait pattern with fixed on crank. The patient's body weight is supported by a harness during waking training. We evaluated the gait speed, physiologic cost index, motor score of lower extremities and the WISCI (walking index for spinal cord injury) level before the training and after the forth and eighth week of walking training. 1. The mean gait speed was significantly increased from .22 m/s at pre-training to .28 m/s after 4 weeks of training and .31 m/s after 8 weeks of training (p=.004). 2. The mean physiologic cost index was decreased from 4.6 beats/min at pre-training to 3.0 beats/min after 4 weeks and 2.0 beats/min after 8 weeks of training, but it was not statistically significant (p=.140). 3. The mean motor score of lower extrernities was significantly increased from 29.8 to 35.8 after 8 weeks of training (p=.043). 4. The mean WISCI level was significantly increased from level 10 to level 19 after 8 weeks of training (p=.007). The results of this study suggest that the gait training program using the auto-walking machine increased the gait speed, muscle strength and galt pattern (WISCI level) in persons with incomplete spinal cord injury. A large, controlled study of this technique is warranted.

  • PDF

팔걸이가 편마비 환자의 보행에 미치는 영향 (The effect of arm sling during hemiplegic gait)

  • 이일석;임형문;최산호;오재건;성강경;이상관
    • 대한중풍순환신경학회지
    • /
    • 제14권1호
    • /
    • pp.80-89
    • /
    • 2013
  • ■ Objectives The aim of study is to analyze the change of gait pattern by arm sling in a hemiplegic patient. ■ Methods We analyzed the change of gait pattern under three conditions using Treadmill Gait analysis equipment(Zebris Co.Ltd FDM-T) First, the patient didn't have arm sling on her upper limb, second, the patient have arm sling on her affected upper limb, third, patient have arm sling on her unaffected upper limb. ■ Results In terms of spatiotemporal gait values, swing phase, step time, step length of unaffected lower limb increased. Furthermore, stride time and stride length also increased when the patient had arm sling on her unaffected upper limb. In terms of displacement of Center of pressure(CoP), anterior/posterior position and lateral symmetry of CoP increased. Furthermore, lateral symmetry of decreased when the patient had arm sling on her affected upper limb. ■ Conclusion Arm sling applied on affected side would be advantage to gait improvement in hemiplegic patients.

  • PDF

여대생의 비만에 따른 보행패턴, 근활성도 및 균형지수의 비교 (Comparisons of Gait Pattern, Muscle Activity and Balance Index according to Obesity in Female College Student)

  • 김찬규;이병훈
    • 한국콘텐츠학회논문지
    • /
    • 제15권6호
    • /
    • pp.259-266
    • /
    • 2015
  • 본 연구는 비만인의 보행과 관련된 근거자료를 제시하고 근골격계 질환 예방을 위한 임상적 자료로 활용하고자 시행하였다. 신체 건강한 여대생 40명을 정상체중집단(20명), 비만집단(20명)으로 분류하여 보행패턴(smartstep), 균형지수(biodex balance SD), 근활성도(surface EMG)를 정량적으로 측정하여 비교하였다. 연구결과, 정상체중집단에 비해 비만집단의 경우 체중으로 인한 압력과 부하를 이겨내고, 체중 증가로 인한 신체 불균형 상태에서 발목관절 움직임을 증가시켜 보행함으로써 발목 움직임에 작용하는 근육의 활성도가 더 높아짐을 알 수 있었다. 따라서 비만인의 하지 근골격계 질환예방을 위해서는 하지 근육의 근력강화 및 지속적인 균형훈련과 보행 훈련이 필요할 것으로 생각된다.

수중 걷기 운동이 우측 편마비 환자의 발 운동학과 보행 속도에 미치는 영향 (The Effect of Aquatic Gait Training on Foot Kinesiology and Gait Speed in Right Hemiplegic Patients)

  • 이상열;형인혁;심제명
    • 한국콘텐츠학회논문지
    • /
    • 제9권12호
    • /
    • pp.674-682
    • /
    • 2009
  • 본 연구는 편마비 환자에게 수중 걷기 훈련이 미치는 영향에 대해 알아보고자 10주간 수중 걷기 훈련과 지상 걷기 훈련 후 족저압, 거골하관절의 움직임, 보향각, 보행 속도를 측정하였다. 대상자는 20명으로 수중걷기 훈련 그룹(n=10)이 엄지발가락 영역, 뒤꿈치영역, 발허리부분의 족저압이 유의하게 증가하였고, 거골하관절의 움직임과 보향각이 안정화되었으며, 보행 속도 또한 증가함을 보였다. 보행 속도의 증가와 거골하 관절의 움직임 안정화와 보향각의 감소는 수중 걷기가 편마비 환자의 보행 속도 뿐만아니라 보행의 안정화에도 영향을 미친다고 생각되어진다. 또한 엄지발가락 영역과 뒤꿈치 영역의 족저압 증가는 보행시 뒤꿈치 닿기와 발가락 밀기 동작의 회복으로 해석되어진다. 이와 같은 결과로 볼때, 현재 사용되고 있는 치료사에 의한 전문적인 물리치료를 받지 못하는 환자들의 경우 스스로 수중 걷기 훈련만으로도 지상 걷기에 비하여 많은 효과를 볼 수 있을 것으로 기대된다.

하퇴절단자용 단축식 발과 스포츠용 에너지 저장형 발 보행 특성 비교연구 (A Comparative Study of Gait Characteristics between Single Axis Foot and Energy Storing Foot for Sports in Trans-tibial Amputee)

  • 장윤희;배태수;김신기;문무성
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.126-132
    • /
    • 2009
  • This study examined the differences in spatio-temporal parameters, joint angle, ground reaction force (GRF), and joint power according to the changes of gait speed for trans-tibial amputees to investigate the features of the energy-storing foot for sports. The subjects walked at normal speed and at fast speed, wearing a single-axis type foot (Korec) and an energy-storing foot for sports (Renegade) respectively. The results showed that Renegade yielded faster gait speed as well as more symmetric gait pattern, compared to Korec. However, as gait speed was increased, there was no significant difference in kinematics, ground reaction force, and joint power between two artificial foots. This was similar to the results from previous studies regarding the energy-storing foot, where the walking velocity and gait symmetry have been improved. Nevertheless, the result of this study differed from the previous ones which reported that joint angle, joint power, and GRF increased as the gait speed increased except spatio-temporal parameters.

Gait Recovery Characteristic According to the Injury Aspect of Descending Motor Pathway in a Chronic Stroke Patient: a Case Study

  • Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • 제34권6호
    • /
    • pp.326-331
    • /
    • 2022
  • Purpose: The stroke patients have gait dysfunction due to impaired neural tracts; corticospinal tract (CST), corticoreticular pathway (CRP), and vestibulospinal tract (VST). In this study, we investigated characteristics of gait pattern according to the injury aspect of the neural track in a stroke patient. Methods: One patient and six control subjects of similar age participated. A 19-year-old male patient with spontaneous intracerebral hemorrhage on right basal ganglia, thalamus, corona radiata and cerebral cortex due to arteriovenous malformation rupture. Diffusion tensor imaging (DTI) data was acquired 21 months after the stroke. Kinematic and spatio-temporal parameters of gait were collected using a three-dimensional gait analysis system. Results: On 21 months DTI, the CST and CRP in affected hemisphere showed severe injury, in contrast, the VST in affected hemisphere showed intact integrity. Result of gait analysis, walking distance and speed were significantly decreased in a patient. The stance rate of unaffected lower limb, the swing rate of affected lower limb and the duration of double stance significantly increased compared with normal control. The knee and hip joint angle were significantly decreased in a patient. Conclusion: We found recovered independent gait ability may be associated with unimpaired VST in a patient with severe injury in CST and CRP.

만성 뇌졸중 환자의 보행속도와 보행 비대칭에 영향을 미치는 무릎근력과 발목 관절가동범위 (Knee Strength and Ankle Range of Motion Influencing Gait Velocity and Gait Asymmetry in Patients With Chronic Stroke)

  • 원종임;안창만
    • 한국전문물리치료학회지
    • /
    • 제22권2호
    • /
    • pp.1-10
    • /
    • 2015
  • The common features of walking in patients with stroke include decreased gait velocity and increased asymmetrical gait pattern. The purpose of this study was to identify important factors related to impairments in gait velocity and asymmetry in chronic stroke patients. The subjects were 30 independently ambulating subjects with chronic stroke. The subjects' impairments were examined, including the isokinetic peak torque of knee extensors, knee flexors, ankle plantarflexors, and ankle dorsiflexors. Passive and active ranges of motion (ROM) of the ankle joint, ankle plantarflexor spasticity, joint position senses of the knee and ankle joint, and balance were examined together. In addition, gait velocity and temporal and spatial asymmetry were evaluated with subjects walking at their comfortable speed. Pearson correlations and multiple regressions were used to measure the relationships between impairments and gait speed and impairments and asymmetry. Regression analyses revealed that ankle passive ROM and peak torque of knee flexors were important factors for gait velocity ($R^2=.41$), while ankle passive ROM was the most important determinant for temporal asymmetry ($R^2=.35$). In addition, knee extensor peak torque was the most significant factor for gait spatial asymmetry ($R^2=.17$). Limitation in ankle passive ROM and weakness of the knee flexor were major contributors to slow gait velocity. Moreover, limited passive ROM in the ankle influenced the level of temporal gait asymmetry in chronic stroke patients. Our findings suggest that stroke rehabilitation programs aiming to improve gait velocity and temporal asymmetry should include stretching exercise for the ankle joint.

유압구동식 4족보행 로봇의 설계 및 제어 (Design and Control of a Hydraulic Driven Quadruped Walking Robot)

  • 김태주;원대희;권오흥;박상덕;손웅희
    • 로봇학회논문지
    • /
    • 제2권4호
    • /
    • pp.353-360
    • /
    • 2007
  • This paper proposes the trot gait pattern generation and online control methods for a quadruped robot to carry heavy loads and to move fast on uneven terrain. The trot pattern is generated from the frequency modulated pattern generation method based on the frequency modulated oscillator in order for the legged robots to be operated outdoor environment with the static and dynamic mobility. The efficiency and performance of the proposed method are verified through computer simulations and experiments using qRT-1/-2. In the experiments, qRT-2 which has two front legs driven by hydraulic linear actuators and two rear casters is used. The robot can trot at the speed up to 1.3 m/s on even surface, walk up and down the 20 degree inclines, and walk at 0.7 m/s on uneven surface. Also it can carry over 100 kg totally including 40 kg payload.

  • PDF