• Title/Summary/Keyword: Gait Form

Search Result 69, Processing Time 0.024 seconds

Reliability of Visual Gait Analysis according to Clinical Experience Level of Physical Therapists (임상 물리치료사의 경험에 따른 시각적 보행 분석의 신뢰도 연구)

  • Lee, In-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.4
    • /
    • pp.174-179
    • /
    • 2013
  • Purpose: Visual gait analysis plays a pivotal role in determining the important gait problem of patients. A few studies have been published and have received little attention regarding visual gait analysis on patients with orthopedic problems. The purposes of this study were to investigate the difference of reliability levels according to experience of clinical physical therapists. Methods: Thirty-five clinical physical therapists, 5 high experienced, 15 experienced, and 15 inexperienced, were recruited and individually evaluated these videotaped gait patterns of the participants, and filled up the structured gait analysis form. The gait of nine participants was videotaped. Reliability levels were calculated by the Intraclass Correlation Coefficients (ICC). Results: The inter-rater reliability of high experienced group (ICC=0.56; 95% CI: 0.50-0.62) was comparable to that of the experienced raters (ICC=0.48; 95% CI: 0.43-0.53) and inexperienced group (ICC=0.42; 95% CI: 0.38-0.46). High experienced group reached a higher inter-rater reliability level. The average intra-rater reliability of the high experienced group was 0.70 (ICCs ranging from 0.54 to 0.82). The experienced group reached an average intra-rater reliability of 0.61 (ICCs ranging from 0.47 to 0.81). The inexperienced group attained average ICC values of 0.53 (ICCs ranging from 0.30 to 0.74). Conclusion: Use of a structured gait analysis form as described in this study was found to be moderately reliable. Clinical experience appears to increase the reliability of visual gait analysis.

Comparison of the Fatigue According to Activity Lower Extremity Muscle with Treadmill Gait on Type of Shoes Sole Form (트레드밀 운동 시 신발밑창에 따라 일부 하지근육의 활성도에 의한 근피로도 비교)

  • Jeong, Dong-jo;Kim, Keun-Jo;Lee, Cu-Rie
    • Journal of Korean Physical Therapy Science
    • /
    • v.24 no.2
    • /
    • pp.27-35
    • /
    • 2017
  • Purpose: This study aimed to investigate the effect of shoes sole form on fatigue of lower extremity during treadmill gait. Method: Thirty healthy young adults (15 males and 15 females) were recruited. They performed treadmill gait in two different conditions: double sole(DS) and flat sole(FS). Result: lower extremity fatigue were signficantly decreased in double sole condition(p<.05). Conclusion: These findings suggest that double sole contributes to reduction of lower extremity muscle fatigue.

Fault-Tolerant Tripod Gaits for Hexapod Robots (육각 보행 로봇의 내고장성 세다리 걸음새)

  • 양정민;노지명
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.12
    • /
    • pp.689-695
    • /
    • 2003
  • Fault-tolerance is an important design criterion for robotic systems operating in hazardous or remote environments. This paper addresses the issue of tolerating a locked joint failure in gait planning for hexapod walking machines which have symmetric structures and legs in the form of an articulated arm with three revolute joints. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but hexapod walking machines have the ability to continue static walking. A strategy of fault-tolerant tripod gait is proposed and, as a specific form, a periodic tripod gait is presented in which hexapod walking machines have the maximum stride length after a locked failure. The adjustment procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

A Study of Gait and Gait Analysis Techniques (보행과 보행분석법에 관한 연구)

  • Bae Sung-Soo;Lee Jin-Hee;Yoon Chang-Goo
    • The Journal of Korean Physical Therapy
    • /
    • v.8 no.1
    • /
    • pp.49-64
    • /
    • 1996
  • The technology of gait analysis is moving rapidly. Human gait is very complex, and a through understanding of it demands with the basic principles of biomechanics and the technology used to measure gait. Some professionals reluctance to use gait analysis may be due to the amount of time and effort necessary to accomplish this and the necessity for teamwork among the disciplines involved. Any form of observational gait analysis has limited precision and is more descriptive than quantative. The techniques of 3-D kinetic and kinematic analysis can provide a detailed biomechanical description of normal and pathological gait. This article review gait characteristics and procedures that are available for gait analysis. We are certain that, given the steady advance of technology and our continued efforts to document the benefits of that technology. gait analysis will soon be a routine part of the evaluation of both the elite athlete and the physically impaired adult or child.

  • PDF

Effects of Removable Ankle-Foot Orthosis in Chronic Patients With Hemiplegia During Gait Training: A Pilot Study

  • Kim, Hyung-geun;Oh, Yong-seop
    • Physical Therapy Korea
    • /
    • v.22 no.3
    • /
    • pp.91-97
    • /
    • 2015
  • This study was conducted to investigate the effects of the removable ankle-foot orthosis (RAFO) which was developed to improve the gait of stroke patients. The subjects of this study were five stroke patients who agreed to participate in this study by signing a written consent form. To verify gait improvement after wearing the orthosis, a Timed Up and Go test and Functional Gait Assessment were performed, and spatiotemporal gait variables such as gait speed, cadence, stride length, double limb support, and the efficient gait test of body sway angle were performed. For every variable, the differences prior to and after wearing the RAFO were compared using the Wilcoxon signed-rank test. Every gait variable improved significantly after wearing the RAFO compared to prior to wearing it. The pilot study will enhance future efforts to evaluate orthotic function objectively during gait in stroke patients.

The change of gait on shoes sole height (신발 밑창 높이에 따른 보행의 변화)

  • Yoon, Se-won;Lee, Jeong-woo;Cho, Woon-SU
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • ■ Objectives This study is to examine change of gait parameters on shoes sole height(high heels, MBT shoes, house shoes) through gait analyzer. ■ Methods The subjects of this study were 12 women in their twenties. Gait analysis system is 5m in total length and gait is led to be comfortable. They put three kinds of shoes each and were led to walk 5m on gait analysis system. ■ Results There were significant differences in step length, single support and load response of gait parameters and in stride length and total double support at double support phase. ■ Conclusion Muscle activity differs in that different that shoes sole height and form because tibialis anterior muscle has strengthen and gastrocnemius has stretched. Therefore we think that patients with knee joint problem consider gait parameters when shoes select.

  • PDF

Development of a Gait Diagnosis Supporting System using Korean Normal Gait Data (한국 성인의 정상 보행데이터를 이용한 보행진단 지원 시스템의 개발)

  • Kim, Dongjin;Ryu, Taebeum;Kwon, Seman;Choi, Hwa Soon;Chung, Min K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.480-486
    • /
    • 2007
  • A gait diagnosis supporting system is necessary to evaluate the characteristics of abnormal gait of a patient in a systematic and efficient manner. The present study developed a gait diagnosis supporting system which compares abnormal gait of a patient with a reference gait data and presents abnormal gait characteristics in an organized form. Three types of diagnosis modules were developed for the spatio-temporal, kinematic and kinetic gait parameters, and a gait data for Korean normal adults was used for the reference data of the system. The system was applied to evaluate the gait pattern of three arthritis patients and the abnormal gait characteristics of them could be easily identified with a systematic and graphical presentation.

The Effect of Form and Hardness of Outsoles on the Motion of the Lower Extremity Joints and on Foot Pressure during Gait (보행 시 신발의 아웃솔 형태가 하지 관절 운동과 발의 압력에 미치는 영향)

  • Kim, Eui-Hwan;Kim, Sung-Sup;Kwon, Moon-Seok;Wi, Ung-Ryang;Lim, Jung;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • The purpose of this study was to analysis the effect of form and hardness of outsoles on the motion of the lower extremity joints and on foot pressure during gait. The subjects were 15 women(mean age, $48.5{\pm}2.4$ years), who had no serious musculoskeletal, coordination, balance or joint/ligament problems within 1 year prior to the study. The pelvic tilt, joint angles at the lower extremities and the vertical ground reaction force(GRF) were compared during gait with 3 types of shoes (A, B, C) by using one-way repeated ANOVA(p<.05). During gait, the peak tilt angle and the range of motion(ROM) of the ankle and knee joints were found to be significantly different among the 3 types of shoes. The type C shoes showed a significantly lower mean second maximum vertical GRF than types A and B. The curved outsoles of type C shoes, which had a form and hardness different from those of A and B, was designed strategically for walking shoes to provide stability to the Additionally, type C induced the dispersion of eccentric pressure and made the center of pressure roll over to the center line of the foot.

Design of Small Scale Quadruped Walking Robot and Realiazion of Static Gait (소형사각 보행로보트의 제작과 정적걸음새의 구현)

  • 배건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.398-402
    • /
    • 1996
  • This paper addresses the design and the gait control of quadruped walking robot. First, we concern the mechanical and electronical(control system) hardware of walking robot, and the second is the results of experiments. The walking robot is the most suitable form to substitute fot human being. So walking robot is worthy of research. The quadruped walking robot and control system is the simplest type of walking robot, therefore we designed a small seale robot for realization of static gait. The robot is designed commpactly and its legs are constructed parallel link type and able to move freely in space. Control system consists of one upper level controller and four lower level controllers. The upper level controller plans the walking path and commands the low level controllers to follow the planned path. The main function of low level cotrollers is control of motors. Total number of motors is twealve and they operate four legs. And robot is ordered to walk and realize static wave gait.

  • PDF

A study on an adaptive gait for a quadruped walking robot under external forces (외력 대처 기능을 갖는 사각 보행 로보트 적응 걸음새에 관한 연구)

  • ;;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.1-12
    • /
    • 1996
  • In this paper, we propose an adaptive gait by which a quadruped walking robot can walk against external disturbances. This adaptive gait mechanism makes it possible for a quadruped walking robot to change its gait and accommodate external disturbances form various external environmental factors. Under the assumption that external disturbances can be converted to an external force acting on the body of a quadruped walking robot, we propose a new criterion for the stability margin of a waling robot by using an effective mass center based on the zero moment point under unknown external force. And for a solution of an adaptive gait against external disturbances, an method of altitude control and reflexive direction control is suggested. An algorithmic search method for an optimal stride of the quadruped mehtod, the gait stability margin of a quadruped walking robot is optimized in changing its direction at any instance for and after the reflexive direction control. To verify the efficiency of the proposed approach, some simulaton results are provided.

  • PDF