• Title/Summary/Keyword: Gait Energy

Search Result 104, Processing Time 0.021 seconds

Case Study of 4-Bar Linkage KAFO in Person With Poliomyelitis (소아마비에서 4절 연쇄 장하지보조기 사례연구)

  • Kim, Jang-Hwan;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Cynn, Heon-Seock;Choi, Heung-Sik
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • The purpose of this study was to compare the ring lock type knee-ankle-foot orthosis (KAFO) with newly developed 4-bar linkage KAFO on the gait characteristics of persons with poliomyelitis clinically. This 4-bar linkage is the stance control type KAFO which provide the stability during stance phase and knee flexion during swing phase. Two subjects participated in this study voluntarily. We provided the customized 4-bar linkage KAFO then asked the subjects to walk in level surface and stairs under the two different KAFO conditions. The characteristics of gait in the persons with poliomyelitis were evaluated using a 3D motion analysis system and force plate. Additionally 6 minute walk test for physiological cost index were conducted using pulse oximeter to measure the energy consumption. In the results of this study, the differences of 4-bar linkage KAFO compared with ring lock type KAFO are as follows: (1) Walking speed, stride length, and step length on level increased in subjects, (2) The gait symmetry was improved by generated knee flexion and decreased pelvic external rotation on level and stairs walking, (3) Decreased vertical excursion of center of mass and pelvic elevation during swing phase was decreased on level, (4) Knee extension moment, hip flexion moment, hip and knee internal rotation moment of non-braced limb were decreased on level walking, (5) Walking speed in 6-minute walk test was increased and physiological cost index was decreased. These findings indicate that 4-bar linkage KAFO compared with ring lock type KAFO is effective in enhancing pattern, endurance, and energy consumption in level surface and stairs walking.

Analysis of Delamination Behavior on the Stacking Sequence of Prosthetic Foot Keel in Glass fiber Reinforced Laminates (인공발(Prosthetic Foot) 스프링용 유리섬유강화 적층재의 적층배향에 따른 층간분리거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.623-631
    • /
    • 2003
  • It is considered that the application of advanced composite materials to the prostheses for the disables is important to improve their bio-mechanical performance. Particularly, energy storing foot prosthesis is mostly important to restore gait ability of the disables with low-extremity amputation since it could provide propulsion at terminal stance enhancing the disables ability to walk long distance even run and jump. Therefore, the energy storing spring of Prosthetic foot keel under cyclic bending moment use mainly of high strength glass fiber reinforced plastic. The main objective of this study was to evaluate the stacking sequence effect using the delamination growth rate(dA$_{D}$/dN) of energy storing spring in glass fiber reinforced plastic under cyclic bending moment. The test results indicated that the shape of delamination zone depends on stacking sequence in GFRP laminates. Delamination area(A$_{D}$) turns out that variable types with the contour increased non-linearly toward the damage zones.nes.

The Comparison of Overground Walking and Treadmill Walking According to the Walking Speed: Motion Analysis and Energy Consumption (보행속도에 따른 지면보행과 Treadmill 보행의 비교: 운동분석 및 에너지 소모)

  • Sohn, R.H.;Choi, H.S.;Son, J.S.;Hwang, S.J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.226-232
    • /
    • 2009
  • In this study, treadmill walking and overground walking were compared at the same condition based on kinematics and energy expenditures(EE). In addition, we compared the actual energy expenditure and calculated EE by treadmill. The kinematics of treadmill and overground walking were very similar. The values at each joint were significantly different(P<0.05), but magnitude of the difference was generally less than 4$^{\circ}$. In the EE using cardiopulmonary exercise, EE of treadmill walking was significantly greater when measured on the overground. It seemed to be the increased stress during the gait by the continuous movement of the belt. As the velocity increased, there was significant difference between actual EE and calculated EE by treadmill due to EE curve increasing exponentially. Therefore the further study would be required to find the correlation of the two methods and calibrate the values from them.

Optimal Trajectory Generation for Biped Robots Walking Up-and-Down Stairs

  • Kwon O-Hung;Jeon Kweon-Soo;Park Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2006
  • This paper proposes an optimal trajectory generation method for biped robots for walking up-and-down stairs using a Real-Coded Genetic Algorithm (RCGA). The RCGA is most effective in minimizing the total consumption energy of a multi-dof biped robot. Each joint angle trajectory is defined as a 4-th order polynomial of which the coefficients are chromosomes or design variables to approximate the walking gait. Constraints are divided into equalities and inequalities. First, equality constraints consist of initial conditions and repeatability conditions with respect to each joint angle and angular velocity at the start and end of a stride period. Next, inequality constraints include collision prevention conditions of a swing leg, singular prevention conditions, and stability conditions. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot model that consists of seven links in the sagittal plane. The optimal trajectory is more efficient than that generated by the Modified Gravity-Compensated Inverted Pendulum Mode (MGCIPM). And various trajectories generated by the proposed GA method are analyzed from the viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Development of Body-Weight-Support System for Walking Rehabilitation (보행 재활을 위한 신체 자중 보상용 모바일 로봇에 관한 연구)

  • Suh, Seung-Whan;Yu, Seung-Nam;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3658-3665
    • /
    • 2010
  • As the population of elderly people and disabled people are increased, various demands for human welfare using robot system are raised. Especially autonomous rehabilitation system using robot could reduce the human effort while maintaining the its intrinsic efficacy. This study deals with mobile gait rehabilitation system which combined with BWS (Body Weight Support) for training of elderly and handicapped people who suffer the muscle force weakness of lower extremity. BWS which is designed by kinematic analysis of body lifting characteristics and walking guide system are integrated with main control system and wheeled platform. This mobile platform is operated by UCS (User Command System) and autonomous trajectory planning algorithm. Finally, through the EMG (Electromyography) signal measuring and its analysis for subject, performance and feasibility of developed system is verified.

Design of Carbon Composite Prosthetic Feet using Finite Element Methods (유한요소 해석기법을 이용한 탄소복합소재 인공발의 설계)

  • Cho, Hyeon Seok;Cha, Gook Chan;Park, Jin Kook;Kim, Shin Ki;Lee, Suk Min;Mun, Mu Sung;Kim, Chang Bu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.769-776
    • /
    • 2013
  • The dynamic compliance characteristics of a prosthetic foot midgait are very important for natural performance in an amputee's gait and should be in a range that provides natural, stable walking. In this study, finite element analysis (FEA) and classical laminate theory were used to examine the mechanical characteristics of a carbon-epoxy composite laminate prosthetic foot as a function of variation in the lamination composition. From this analysis, an FEM model of a prosthetic keel, made from the composite material, was developed. The lamination composition of the keel was designed for improved stiffness. The prototype product was fabricated using an autoclave. Vertical loading response tests were performed to verify the simulation model. The results of the experiments were similar to those from simulations below the loading level of the gait, suggesting use of the proposed simulation model for prosthetic keel design.

Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms (유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행)

  • Jeon Kweon-Soo;Kwon O-Hung;Park Jong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Analysis on the differences of mechanical efficiency from design characteristics of wheelchair (휠체어 디자인 특성에 따른 효율의 차이 규명)

  • Lim, Bee-Oh;Moon, Yeong-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.109-119
    • /
    • 2003
  • The purpose of this study was to investigate differences of the mechanical efficiency on the characteristics of the basketball wheelchairs(cambers & size of the handrims). Nine healthy and normal wheelchair basketball players who had no impairments to their upper extremities were volunteered to participate in this study. $VO_2$ was collected using automatic gas analyzer(vmax29). Gross efficiency, net efficiency and work efficiency were analyzed from the calculated external power output and energy expenditure. The results were followed. First, gross efficiency in the basketball wheelchairs was observed across the range from 4 to 10%. Gross efficiency in this study showed less values than that from the literature reviewed in the arm cranking(15%), racing wheelchair(above 30%), gait(27%) and cycling(18-23%). Second, the small size of handrim(61cm) at the 16 degrees of camber produced higher efficiency values than the large size of handrim(66cm) whereas the different sizes of handrim at the 20 degrees of camber did not show any pattern. Third, both faster speed($1.11^m/s{\rightarrow}1.39^m/s$) and increases in treadmill inclination produced increases in energy expenditure. The results of this study may provide not only better understanding of the mechanical efficiency with adequate camber degree and proper size of handrim but also fundamental information for manufacturing the wheelchair.

Biologically Inspired Approach for the Development of Quadruped Walking Robot (사족보행 로봇의 개발을 위한 생체모방적 접근)

  • Kang Tae-Hun;Song Hyun-Sup;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.307-314
    • /
    • 2006
  • In this paper, we present a comprehensive study for the development of quadruped walking robot. To understand the walking posture of a tetrapod animal, we begin with a careful observation on the skeletal system of tertapod animals. From taking a side view of their skeletal system, it is noted that their fore limbs and hind limbs perform characteristic roles during walking. Moreover, the widths of footprints and energy efficiency in walking have a close relationship through taking a front view of their walking posture. According to these observations, we present a control method where the kinematical solutions are not necessary because we develop a new rhythmic gait pattern for the quadruped walking robot. Though the proposed control method and rhythmic pattern are simple, they can provide the suitable motion planning for the robot since the resultant movement is based on the animal's movements. The validity of the proposed idea is demonstrated through dynamic simulations.

A Kinematic Design of the Leg of the Walking Machine (보행로부트 다리부의 기구학적 설계)

  • 윤용산;홍형주
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.1007-1013
    • /
    • 1989
  • This paper describes the procedure of kinmatic design of a quadruped walking machine which has better mobility and higher energy efficiency than the wheeled or tracked vehicles on the rough terrain. Specifically, this paper puts much emphasis on the procedure and its rationality of the design of the leg which is the key mechanical element of the walking robot. And it shows the appropriateness of the selected mechanism and the design method through the walking experiment of the prototype machine built upon the resulted design. The pantograph mechanisms are proved to be acceptable as the leg of the walking machine from the experiment even though it is indicated that the walking speed and the body deflection should be improved further. This paper also describes the problems of the realization of the gait the frictional effects along with their causes in the walking experiment.

  • PDF