• Title/Summary/Keyword: Gait Detection

Search Result 66, Processing Time 0.028 seconds

Step Count Detection Algorithm using Acceleration Sensor (가속도 센서를 이용한 걸음수 검출 알고리즘)

  • Han, Y.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.3
    • /
    • pp.245-250
    • /
    • 2015
  • Portable devices, such as smart phones and personal digital assistants (PDAs) play an important role in our everyday life. In this paper, we propose a step count algorithm based on SVM(signal vector magnitude) and a adaptive threshold processing to monitor the physical activity. The algorithm measures a user's step counts using the smart phone's inbuilt accelerometer and g sensor. Experiment results showed the proposed algorithm has good performance in accuracy and adaptability than the app on your smart phone.

  • PDF

Design and Implementation of Walking Status Analysis System based on Multi-Sensors

  • Seo, Kwi-Bin;Lee, Seung-Hyun;Hong, Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.159-166
    • /
    • 2019
  • Recently, the advanced development of smart devices has increased the interest in health-care, and many people are paying more attentions to disease prevention than disease treatment. Among these prevention methods, the bare body movement has received much attention, and especially walking exercise is attracting much attention because it is enjoyable without any restrictions on place and time. Walking exercise is generally divided into two types: walking on the ground and climbing the stairs. Walking up the stairs consumes much more calories compared to walking on the ground. These walking exercises have the advantage that they can be easily performed by male and female without special equipments or economic considerations. However, there is a lack of applications and systems that accurately determine such walking and stair walking and measure momentum according to stair walking. In this paper, we designed and implemented a real-time walking status analysis system using smartwatch's, pedometer, smartphone's barometer and beacons.

Human Tracking and Body Silhouette Extraction System for Humanoid Robot (휴머노이드 로봇을 위한 사람 검출, 추적 및 실루엣 추출 시스템)

  • Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.593-603
    • /
    • 2009
  • In this paper, we propose a new integrated computer vision system designed to track multiple human beings and extract their silhouette with an active stereo camera. The proposed system consists of three modules: detection, tracking and silhouette extraction. Detection was performed by camera ego-motion compensation and disparity segmentation. For tracking, we present an efficient mean shift based tracking method in which the tracking objects are characterized as disparity weighted color histograms. The silhouette was obtained by two-step segmentation. A trimap is estimated in advance and then this was effectively incorporated into the graph cut framework for fine segmentation. The proposed system was evaluated with respect to ground truth data and it was shown to detect and track multiple people very well and also produce high quality silhouettes. The proposed system can assist in gesture and gait recognition in field of Human-Robot Interaction (HRI).

The Development and Verification of Balance Insole for Improving the Muscle Imbalance of Left and Right Leg Using based Sound Feedback (청각 피드백이 적용된 좌우 불균형 개선을 위한 밸런스 인솔 개발 및 검증)

  • Kang, Seung-Rok;Yoon, Young-Hwan;Yu, Chang-Ho;Nah, Jae-Wook;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • This study was to develop the balance insole system for detecting and improving the muscle imbalance of left and right side in lower limbs. We were to verify the validation of balance insole system by analyzing the strategy of muscular activities and foot pressure according to sound feedback. We developed the balance insole based FSR sensor modules for estimating the muscle imbalance using detecting foot pressure. The insole system was FPCB have 8-spot FSR sensor with sensitivity range of 64-level. The participants were twenty peoples who have muscle strength differences in left and right legs over 20%. We measured the muscular activity and foot pressure of left and right side of lower limbs in various gait environment for verifying the improvement effect of muscle imbalance according to sound feedback. They performed gait in slope at 0, 5, 10, 15% and velocity at 3, 4, 5km/h. The result showed that the level of muscle imbalance reduced within 30% for sound feedback of balance insole system contrast to high level of muscle imbalance at 169.9~246.8% during normal gait for increasing slope and velocity. This study found the validation of balance insole system with sound feedback stimulus. Also, we thought that it is necessary to research on the sensitivity of foot area, detection of muscle imbalance and processing algorithm of correction threshold spot.

Implementation of a Falls Recognition System Using Acceleration and Angular Velocity Signals (가속도 및 각속도 신호를 이용한 낙상 인지 시스템 구현)

  • Park, Geun-Chul;Jeon, A-Young;Lee, Sang-Hoon;Son, Jung-Man;Kim, Myoung-Chul;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.54-64
    • /
    • 2013
  • In this study, we developed a falling recognition system to transmit SMS data through CDMA communication using a three axises acceleration sensor and a two axises gyro sensor. 5 healthy men were selected into a control group, and the fall recognition system using the three axises acceleration sensor and the two axises gyro sensor was devised to conduct an experiment. The system was attached to the upper of their sternum. According to the experiment protocol, the experiment was carried out 3 times repeatedly divided into 3 specific protocols: falling during gait, falling in stopped state, and falling in everyday life. Data obtained in the falling recognition system and LabVIEW 8.5 were used to decide if falling corresponds to that regulated in an analysis program applying an algorithm proposed in this study. In addition, results from falling recognition were transmitted to designated cellular phone in a SMS (Shot Message Service) form. These research results show that an erroneous detection rate of falling reached 19% in applying an acceleration signal only; 6% in applying an angular velocity; and 2% in applying a proposed algorithm. Such finding suggests that an erroneous detection rate of falling is improved when the proposed algorithm is applied incorporated with acceleration and angular velocity. In this study therefore, we proposed that a falling recognition system implemented in this study can make a contribution to the recognition of falling of the aged or the disabled.

Real-Time Step Count Detection Algorithm Using a Tri-Axial Accelerometer (3축 가속도 센서를 이용한 실시간 걸음 수 검출 알고리즘)

  • Kim, Yun-Kyung;Kim, Sung-Mok;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). The recognition rate of our algorithm was 97.34% better than that of the Actical device(91.74%) by 5.6%.

6 Clinical Reports of Temporary Severe Amnesia Patients -focusing on amnesia, hysteric convulsion, dissociative disorder (단기 기억상실을 주증(主症)으로 하는 6례(例)의 임상보고 -중기(中氣), 건망(健忘), 해리성 기억장애 중심으로)

  • Oh, Young-Jin;Kim, Bo-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.16 no.2
    • /
    • pp.287-299
    • /
    • 2005
  • Dissociative disorder is a psychiatric disorder characterized by a sudden loss of memory, but which has no organic disease or explanation. It usually occurs after heavy psychosocial stress or traumatic experience. A transient cerebral ischemic attack (TIA) is an acute episode of temporary and focal loss of cerebral function of vascular origin. TIAs are rapid in onset; symptoms reach their maximal manifestation in fewer than 5 minutes. Manifestations are of variable duration and typically last 2-15 minutes(rarely as long as 24 h). Most TIA durations are less than 1 hour. Of concern is the careful detection of changes in behavior, speech, gait, memory, movement, and vision. TIAs are uncommon in persons younger than 60 years. I treat 6 cases of Sudden Temporary Amnesia Patients with oriental medicine and they are improved. All of them had amnesia for $6{\sim}10\;hours$. During that time, they show behavioral changes and they are not on the state of unconsciousness. After recovery, they also forget what happen at the time. they have some emotional reason too. In conclusion, 4 cases of them belong to dissociative disorder and 2 other cases, TIA.

  • PDF

Control Algorithm of the Lower-limb Powered Exoskeleton Robot using an Intention of the Human Motion from Muscle (인체근육의 동작의도를 이용한 하지 근력증강형 외골격 로봇의 제어 알고리즘)

  • Lee, Hee-Don;Kim, Wan-Soo;Lim, Dong-Hwan;Han, Chang-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.124-131
    • /
    • 2017
  • This paper present a novel approach to control the lower body power assistive exoskeleton system of a HEXAR-CR35 aimed at improving a muscular strength. More specifically the control of based on the human intention is crucial of importance to ensure intuitive and dexterous motion with the human. In this contribution, we proposed the detection algorithm of the human intention using the MCRS which are developed to measure the contraction of the muscle with variation of the circumference. The proposed algorithm provides a joint motion of exoskeleton corresponding the relate muscles. The main advantages of the algorithm are its simplicity, computational efficiency to control one joint of the HEXAR-CR35 which are consisted knee-active type exoskeleton (the other joints are consisted with the passive or quasi-passive joints that can be arranged by analyzing of the human joint functions). As a consequence, the motion of exoskeleton is generated according to the gait phase: swing and stance phase which are determined by the foot insole sensors. The experimental evaluation of the proposed algorithm is achieved in walking with the exoskeleton while carrying the external mass in the back side.

Optimal Electrode Selection for Detection of Human Leg Movement Using Bio-Impedance (생체 임피던스를 이용한 인체 하지운동 출을 위한 최적 전극위치 선정)

  • 송철규;윤대영;이동헌;김승찬;김덕원
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.8
    • /
    • pp.506-509
    • /
    • 2003
  • This paper describes the possibility of analyzing gait pattern from the changes of the lower leg electrical impedance. This impedance was measured by the four-electrode method. Two current electrodes were applied to the thigh, knee, and foot., and two potential electrodes were applied to the lateral, medial, and posterior position of human leg. The correlation coefficients of the joint angle and the impedance change from human leg movement was obtained using a electrogoniometer and 4ch impedance measurement system developed in this study. We found the optimal electrode position for knee and ankle joint movements based on high correlation coefficient, least interference, and maximum magnitude of impedance change. The correlation coefficients of the ankle, knee, and the hip movements were -0.913, 0.984 and 0.823, respectively. From such features of the human leg impedance, it has been made clear that different movement patterns exhibit different impedance patterns and impedance level. This system showed feasibility that lower leg movement could be easily measured by impedance measurement system with a few skin-electrodes.

Analysis of Lower-Limb Motion during Walking on Various Types of Terrain in Daily Life

  • Kim, Myeongkyu;Lee, Donghun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.319-341
    • /
    • 2016
  • Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU). Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method. Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed. Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain. Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase. Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual's location and walking speed.