• 제목/요약/키워드: Gait Control

검색결과 658건 처리시간 0.027초

The effects of treadmill training on dynamic balance and gait function in stroke patients: a pilot randomized controlled trial

  • Chung, Eun Jung;Lee, Byounghee
    • Physical Therapy Rehabilitation Science
    • /
    • 제2권1호
    • /
    • pp.39-43
    • /
    • 2013
  • Objective: The objective of this study is to investigate the effect of treadmill gait trainig on dynamic balance and gait functions in stroke patients. Design: Randomized, double-blind, controlled pilot study. Methods: Four subjects following first stroke participated in this study. They were divided randomly into the treadmill gait trainig group (TM group) (n=2) and the control group (n=2). Subjects in both groups received general training five times per week. Subjects in the TM group practiced an additional treadmill gait trainig program that consisted of 60 minutes, three times per week, during a period of four weeks. Timed up and go test (dynamic balance) and the GAITRite test (gait function) were evaluated before and after the intervention. Results: In dynamic balance (timed up and go test), the TM group (-14.235 sec) showed a greater decrease than the control group (-13.585 sec). In gait functions, the TM group showed a greater increase in gait speed (12.8 cm/s vs. 10.15 cm/s), step-length (5.825 cm vs. 3.735 cm), and stride-length (5.005 cm vs. 1.55 cm) than the control group. Conclusions: The treadmill gait trainig improved dynamic balance and gait functions. Further research is needed in order to confirm the generalization of these findings and to identify which stroke patients might benefit from treadmill gait trainig.

  • PDF

소아마비 환자의 보행개선을 위한 새로운 장하지 보조기의 무릎관절 제어 (Knee Joint Control of New KAFO for Polio Patients Gait Improvement)

  • 강성재;조강희;김영호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.132-135
    • /
    • 2002
  • In the present study, an electro-mechanical KAFO (knee-ankle-foot orthosis) which satisfies both the stability in stance and the knee flexion in swing was developed and evacuated in eight polio patients. A knee joint control algorithm suitable for polio patients who are lack of the stability in pre-swing was also developed and various control systems and circuits were also designed. In addition, knee flexion angles and knee moments were measured and analyzed for polio patients who used the developed KAFO with the three-dimensional motion analysis system. Energy consumption was also evaluated for the developed KAFO by measuring the movement of the COG (center of gravity) during gait. From the present study, the designed foot switch system successfully determined the gait cycle of polio patients and controlled knee joint of the KAFO, resulting in the passive knee flexion or foot clearance during swing phase. From the three-dimensional gait analysis for polio patients, it was found that the controlled-knee gait with the developed electro-mechanical KAFO showed the knee flexion of 40$^{\circ}$∼45$^{\circ}$ at an appropriate time during swing. Vertical movements of COG in controlled-knee gait (gait with the developed electro-mechanical KAFO) were significantly smaller than those in looked knee gait(gait with the locked knee Joint). and correspondingly controlled-knee gait reduced approximately 40% less energy consumption during horizontal walking gait. More efficient gait patterns could be obtained when various rehabilitation training and therapeutic programs as well as the developed electro-mechanical KAFO were applied for polio patients.

  • PDF

Effect of Underwater Gait Training with a Progressive Increase in Speed on Balance, Gait, and Endurance in Stroke Patients

  • Kim, Heejoong;Chung, Yijung
    • The Journal of Korean Physical Therapy
    • /
    • 제31권4호
    • /
    • pp.204-211
    • /
    • 2019
  • Purpose: This study aimed to investigate the effect of progressive speed increase during underwater gait training on stroke patients' balance, gait, and endurance, as well as to compare the effects of underwater gait training and land gait training. Methods: Subjects were randomly allocated into three groups. Underwater gait training group (n=10), land gait training group (n=9) and control group (n=9). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. The patients were assessed before and after the experiment in terms of the Berg balance scale, characteristics of gait, and 6-minute walking test. Results: The beneficial effect perceived in the speed increase underwater gait training (UGT) group was significantly greater than in the groups who were trained with speed increase land gait training (LGT) group, and the control group regarding the following aspects: the Berg balance scale, the affected step length, the affected stride length, and the 6-minute walking test (p<0.05). The LGT group showed a more significant effect on the Berg balance scale, the affected step length, the affected stride length, and the 6-minute walking test (p<0.05), compared to the control group. Furthermore, the UGT group showed a significantly greater effect on the gait speed when compared to the control groupb (p<0.05). Conclusion: This study shows that progressive UGT is effective in improving balance, gait, and endurance in stroke patients. Therefore, we believe that progressive UGT may be used as a method for general physical therapy in patients with stroke.

하반신 마비환자를 위한 동력보행보조기의 퍼지제어 기법 개발 (Development of Fuzzy Control Method Powered Gait Orthosis for Paraplegic Patients)

  • 강성재;류제청;김규석;김영호;문무성
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.163-168
    • /
    • 2009
  • In this study, we would be developed the fuzzy controlled PGO that controlled the flexion and the extension of each PGO's hip joint using the bio-signal and FSR sensor. The PGO driving system is to couple the right and left sides of the orthosis by specially designed hip joints and pelvic section. This driving system consists of the orthosis, sensor, control system. An air supply system of muscle is composed of an air compressor, 2-way solenoid valve (MAC, USA), accumulator, pressure sensor. Role of this system provide air muscle with the compressed air at hip joint constantly. According to output signal of EMG sensor and foot sensor, air muscles and assists the flexion of hip joint during PGO gait. As a results, the maximum hip flexion angles of RGO's gait and PGO's gait were about $16^{\circ}\;and\;57^{\circ}$ respectively. The maximum angle of flexion/extention in hip joint of the patients during RGO's gait are smaller than normal gait, because of the step length of them shoes a little bit. But maximum angle of flexion/extention in hip joint of the patients during PGO's gait are larger than normal gait.

뇌졸중환자의 동작관찰 보행훈련이 시·공간적 지표와 재활동기에 미치는 영향 (Effects of Observed Action Gait Training on Spatio-temporal Parameter and Motivation of Rehabilitation in Stroke Patients)

  • 강권영
    • 대한물리의학회지
    • /
    • 제8권3호
    • /
    • pp.351-360
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate the effects of observed action gait training on stroke patients. METHODS: 22 subjects were randomized into two groups. The observed action gait training performed that watched a video of normal gait before gait training and the general gait training without watching it. The experimental group(n=11) performed observed action gait training and the control group(n=11) performed general gait training. Both group received gait training for 3 times per week during 8 weeks. RESULTS: The experimental group showed significant differences in the cadence, gait velocity, stride, step, single limb support, double limb support, stride length and step length(p<.05). The control group showed significant differences only in the stride(p<.05). CONCLUSION: The observed action gait training affected coordination and weight shift, as well as symmetry of the body. Plasticity of the brain was facilitated by repetitive visual and sensory stimulation. The observed action gait training promoted the normal gait by watching the normal gait pattern. In conclusion, motor learning through the sensory stimulation promotes brain plasticity that could improve motor function, and observed action gait training indirectly identified stimulated brain activities.

The Effects of Dual-Task Gait Training on Gait Performance under Cognitive Tasks in Chronic Stroke

  • Yu, Kyung-hoon;Jeon, Hye-seon
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.364-368
    • /
    • 2015
  • Purpose: Walking in the dual-task condition is a critical skill for hemiplegic patients to live in real-life situations. The purpose of this study was to compare the effect of dual-task gait training and general gait training on gait parameters and cognitive function in patients with chronic stroke during dual-task walking. Methods: The study included 23 patients with chronic hemiparetic stroke who were randomly divided into experimental (dual-task gait training) and control (general walking training) groups. The 11 subjects in the experimental group and nine subjects in the control group received dual-task gait training (walking while handling a ball, crossing obstacles, picking up various objects, and problem solving simple cognitive tasks and general over-ground gait training, respectively, for 30 minutes per day 5 days per week for 4 weeks. Spatiotemporal parameters and cognitive tasks in the dual-task gait condition were measured. Statistical analysis of the changes between the pre- and post-intervention measurement variables was performed using ANCOVA. Results: In the gait condition under cognitive tasks, the changes pre- and post-intervention in gait velocity, stride length, double support limb, and step symmetry were significantly greater in the dual-task gait training group; however, the dual-task gait training group showed no significant improvement compared to the general gait training group in terms of the assessment of cognitive tasks. Conclusion: The findings suggest that dual-task gait training may be beneficial for walking ability in dual-task walking condition.

Effects of Diagonal Pattern Self-Exercise on Trunk Control, Balance, and Gait Ability in Chronic Stroke Patients

  • Yang, Jaeho;Park, Shinjun;Kim, Soonhee
    • 국제물리치료학회지
    • /
    • 제11권2호
    • /
    • pp.2028-2035
    • /
    • 2020
  • Background: Weakness of the trunk muscles decreases the trunk control ability of stroke patients, which is significantly related to balance and gait. Objectives: To compare the impact of diagonal pattern self-exercise on an unstable surface and a stable surface for trunk rehabilitation on trunk control, balance, and gait ability in stroke patients. Design: Nonequivalent control group design. Methods: Twenty four participants were randomized into the experimental group (diagonal pattern self-exercise while sitting on an unstable surface, n=12) and the control group (diagonal pattern self-exercise while sitting on a stable surface, n=12). All interventions were conducted for 30 minutes, three times a week for four weeks, and the trunk impairment scale (TIS), berg balance scale (BBS), functional gait assessment (FGA), and G-walk were measured. Results: All groups indicated significant increases in all variables (TIS, BBS, FGA, cadence, speed, stride length) after four weeks. The TIS, BBS, FGA, cadence, gait speed, and stride length group-by-time were significantly different between the two groups. Conclusion: We found that, in stroke patients, diagonal pattern self-exercise on an unstable surface is a more effective method for improving trunk control, balance, and gait ability than diagonal pattern self-exercise on a stable surface.

시각적 되먹임을 이용한 골반경사 운동이 편마비 환자의 보행특성에 미치는 영향 (The Influence of Pelvic Tilt Exercise Using Visual Feedback upon the Gait Characteristics of Patients with Hemiplegia)

  • 김병남;이완희
    • The Journal of Korean Physical Therapy
    • /
    • 제14권1호
    • /
    • pp.75-88
    • /
    • 2002
  • The purpose of this study was to investigate the influence of anterior, posterior, and lateral pelvic tilt exercise upon the gait characteristics of patients with hemiplegia including their gait velocity, cadence, stride length, step length of the non affected side, step length of the affected side, foot angle of the non affected side, foot angle of the affected side, base of support, and so on. The subject of this study was 24 men and women patients with hemiplegia. The patients, the subject of this study, were classified into 12 patients of treatment group applying pelvic tilt exercise using visual feedback and 12 patients of control group applying general pelvic tilt exercise, and then analyzed their gait before and after exercise. Temporal distance gait analysis (Boening, 1977) was used to analyze their gait, and ink foot-print was applied as on of measurement methods. To find out meaningful difference between control group and treatment group, this study carried out independent sample t-test for each item by utilizing SPSS/Win 10.0, compared changes in control group's and treatment group's gait characteristics before and after exercise as percentage, and applied paired t-test to conduct before-after test in same group. Statistical significance level was ${\alpha}$ < 0.05. The results of this study were as follows. As a result of independent sample t-test for control group's and treatment group's gait characteristics after exercise, it was not statistically significant so there was no meaningful difference between two groups. However, it was statistically significant in the change rate(%) of gait characteristics, and treatment group's patients with hemiplegia had been highly changed in gait characteristics in comparison with control group. From the above-mentioned results, could find that pelvic tilt exercise using visual feedback for patients with hemiplegia was effective to improve their gait ability and it could increase the ability in comparison with general pelvic tilt exercise. In the future, studies on the effect of pelvic tilt exercise using visual feedback shall be continued based on more quantitative methods.

  • PDF

PNF를 이용한 체간안정화운동이 뇌졸중 환자의 체간조절능력과 균형, 보행에 미치는 영향: 단일사례연구 (Effects of Trunk Stability Exercise by using PNF on Trunk Control Ability and Balance, Gait in a Patient with Hemiplegia: A Single Case Study)

  • 정두교
    • PNF and Movement
    • /
    • 제13권4호
    • /
    • pp.203-213
    • /
    • 2015
  • Purpose: Deficits in lower-extremity function and trunk control ability have a negative impact on individuals with hemiplegia. This case report aimed to describe the effect of trunk stability exercises using proprioceptive neuromuscular facilitation (PNF) on trunk control ability, balance, and gait in a patient with hemiplegia. Methods: A 77-year-old man with hemiplegia and trunk and lower extremity impairment participated in this four-week training intervention. Results: The patient demonstrated improvements in trunk control ability, balance, and gait performance. Outcome measures (Fugl-Meyer Assessment Lower Extremity (FMA-LE), Trunk Control Test, Berg Balance Scale, Timed Up and Go test, 10 Meter Walk test) were measured before and after the training program. Conclusion: The results of this case suggest that a trunk stability exercise using a PNF program may improve trunk control ability, balance, and gait in a patient with hemiplegia.

경사면 보행 안정성 향상을 위한 불연속 걸음새 제어 (Discontinuous Zigzag Gait Control to Increase the Stability During Walking in Slope)

  • 박세훈;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.959-966
    • /
    • 2009
  • An essential consideration when analyzing the gait of walking robots is their ability to maintain stability during walking. Therefore, this study proposes a vertical waist-jointed walking robot and gait algorithm to increase the gait stability margin while walking on the slope. First, the energy stability margin is compared according to the posture of the walking motion on slope. Next, a vertical waist-jointed walking robot is modeled to analyze the stability margin in given assumption. We describe new parameters, joint angle and position of a vertical waist-joint to get COG (center of gravity of a body) in walking. Finally, we prove the superiority of the proposed gait algorithm using simulation and conclude the results.