• Title/Summary/Keyword: Gait Analysis System

Search Result 321, Processing Time 0.03 seconds

Case Study of Gait Training Using Rhythmic Auditory Stimulation(RAS) for a Pediatric Patient with Cerebellar Astrocytomas (리듬청각자극(RAS)을 사용한 소뇌 별아교세포종(CA) 환아의 보행훈련 사례 연구)

  • Kim, Soo Ji;Cho, Sung Rae;Oh, Soo-Jin;Kwak, Eunmi Emily
    • Journal of Music and Human Behavior
    • /
    • v.7 no.2
    • /
    • pp.65-81
    • /
    • 2010
  • This single case study is to examine the gait parameter changes of a 12-year old patient with Cerebellar Astrocytomas using RAS in gait training program. Kinematic and temporospatial changes were analyzed using VICON 370 Motion Analysis System. A total of nine RAS gait training sessions was provided and each training program took 30 minutes. Gait analysis revealed that the patient showed improvement in cadence, velocity, stride length, and step length and improved the range of joint movements by showing gait patterns similar to normal distribution from a pathological pattern. This study showed possibilities to apply the RAS technique to the various population including clients with cerebellum damaged; however more further research should be done in this area.

  • PDF

A Study on Gait Imbalance Evaluation System based on Two-axis Angle using Encoder (인코더를 이용한 2축 각도 기반 보행 불균형 평가 시스템 연구)

  • Shim, Hyeon-min;Kim, Yoohyun;Cho, Woo-Hyeong;Kwon, Jangwoo;Lee, Sangmin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.401-406
    • /
    • 2015
  • In this study, the gait imbalance evaluation algorithm based on two axes angle using encoder is proposed. This experiment was carried out to experiment with a healthy adult male to 10 people. The device is attached to the hip and knee joint in order to measure the angle during the gait. Normal and imbalance gait angle data were measured using an encoder attached to the hip and knee joints. Also, in order to verify the reliability of estimation of asymmetrical gait using hip and knee angle, it was compared with the result of asymmetrical gait estimation using foot pressure. SI (Symmetry Index) was used as an index for determining the gait imbalance. As a result, normal gait and 1.5cm imbalance gait were evaluation as normal gait through SI using an encoder. And imbalance gait of 3cm, 4cm, and 6cm were judge by imbalance gait. Whereas all gait experiments except normal gait were evaluation as imbalance gait through SI using the pressure. It was possible to determine both the normal gait and imbalance gait through measurement for the angle and the pressure.

Analysis of Obstacle Gait Using Spatio-Temporal and Foot Pressure Variables in Children with Autism (자폐성 장애 아동의 시공간 및 압력분포 변인을 통한 장애물보행 분석)

  • Kim, Mi-Young;Choi, Bum-Kwon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.459-466
    • /
    • 2011
  • The purpose of this study was to analyze of obstacle gait using spatio-temporal and foot pressure variables in children with autism. Fifteen children with autism and fifteen age-matched controls participated in the study. Spatio-temporal and foot pressure variables was investigated using GAITRite pressure sensor system. Each footprint was divided into 12 equal trapezoids and after that the hindfoot, midfoot and forefoot analysis was developed. Independent t-test was applied to compare the gait variables between the groups. The results showed that the autism group were significantly decreased in velocity, cadence, cycle and swing time compared to the control group. The autism group were significantly increased in step width and toe out angle compared to the control group. The autism group were significantly increased at midfoot and forefoot of lateral part of footprint and forefoot of medial part of footprint in the peak time compared to the control group. The autism group were significantly increased at midfoot and hindfoot in $P^*t$, at midfoot in active area, and at hindfoot in peak pressure compared to the control group. In conclusion, the children with autism showed abnormal obstacle gait characteristics due to muscle hypotonia, muscle rigidity, akinesia, bradykinesia and postural control impairments.

A Method for the Reduction of Skin Marker Artifacts During Walking : Application to the Knee

  • Mun, Joung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.825-835
    • /
    • 2003
  • Previous studies have demonstrated the importance of joint angle errors mainly due to skin artifact and measurement errors during gait analysis. Joint angle errors lead to unreliable kinematics and kinetic analyses in the investigation of human motion. The purpose of this paper is to present the Joint Averaging Coordinate System (JACS) method for human gait analysis. The JACS method is based on the concept of statistical data reduction of anatomically referenced marker data. Since markers are not attached to rigid bodies, different marker combinations lead to slightly different predictions of joint angles. These different combinations can be averaged in order to provide a "best" estimate of joint angle. Results of a gait analysis are presented using clinically meaningful terminology to provide better communication with clinical personal. In order to verify the developed JACS method, a simple three-dimensional knee joint contact model was developed, employing an absolute coordinate system without using any kinematics constraint in which thigh and shank segments can be derived independently. In the experimental data recovery, the separation and penetration distance of the knee joint is supposed to be zero during one gait cycle if there are no errors in the experimental data. Using the JACS method, the separation and penetration error was reduced compared to well-developed existing methods such as ACRS and Spoor & Veldpaus method. The separation and penetration distance ranged up to 15 mm and 12 mm using the Spoor & Veldpaus and ACRS method, respectively, compared to 9 mm using JACS method. Statistical methods like the JACS can be applied in conjunction with existing techniques that reduce systematic errors in marker location, leading to an improved assessment of human gait.

Development and Evaluation of the Auditory Feedback Gait Training System Induced Symmetrical Weight-Bearing in Hemiplegic Patients (편마비 환자의 대칭적 체중부하 유도를 위한 청각적 피드백 보행훈련 시스템 개발 및 평가)

  • Kwon, Y.C.;Lee, H.J.;Tae, K.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 2012
  • In this study, we developed a wireless rehabilitation auditory feedback gait training system for symmetrical weight-bearing in patient with CVA. The device consists of an instantaneous shoe equipped with two load-cell sensors. Auditory feedback can be applied according to the weight-bearing. For gait patterns analysis, cadence, walking velocity, stance/swing phase ratio and gait cycle were examined. The clinical test with six healthy volunteers and two hemiplegic patients was performed applying the auditory feedback system. Both normal subjects and hemiplegic patients were increased strength on weight-bearing in affected limb, walking velocity, and cadence after biofeedback device. Also, the stance time with weight-bearing was increased while the swing time was decreased in gait phase. It can be expected that by using the feedback system, the patient with lower limb disorder will be able to reach a better quality of weight-bearing during gait.

  • PDF

Applicability and Adaptability of Gait-based Biometric Security System in GCC

  • S. M. Emdad Hossain
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.202-206
    • /
    • 2024
  • Robust system may not guaranty its applicability and adaptability. That is why research and development go together in the modern research concept. In this paper we are going to examine the applicability and adaptability of gait-based biometric identity verification system especially in the GCC (Gulf Cooperation Council). The system itself closely involved with human interaction where privacy and personality are in concern. As of 1st phase of our research we will establish gait-based identity verification system and then we will explain them in and out of human interaction with the system. With involved interaction we will conduct an extensive survey to find out both applicability and adoptability of the system. To conduct our experiment, we will use UCMG databased [1] which is readily available for the research community with more than three thousand video sequences in different viewpoint collected in various walking pattern and clothing. For the survey we will prepare questioners which will cover approach of data collection, potential traits to collect and possible consequences. For analyzing gait biometric trait, we will apply multivariate statistical classifier through well-known machine learning algorithms in a ready platform. Similarly, for the survey data analysis we will use similar approach to co-relate the user view point for such system. It will also help us to find the perception of the user for the system.

An Inverse Dynamic Analysis of Lower Limbs During Gait (보행 중 하지 관절의 역동역학 해석)

  • 송성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • An inverse dynamic model of lower limbs is presented to calculate joint moments during gait. The model is composed of 4 segments with 3 translational joints and 12 revolute joints. The inverse dynamic method is based on Newton-Euler formalism. Kinematic data are obtained from 3 dimensional trajectories of markers collected by a motion analysis system. External forces applied on the foot are measured synchronously using force plate. The use of developed model makes it possible to calculate joint moments for variation of parameters.

Feasibility Study of Gait Recognition Using Points in Three-Dimensional Space

  • Kim, Minsung;Kim, Mingon;Park, Sumin;Kwon, Junghoon;Park, Jaeheung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.124-132
    • /
    • 2013
  • This study investigated the feasibility of gait recognition using points on the body in three-dimensional (3D) space based on comparisons of four different feature vectors. To obtain the point trajectories on the body in 3D, gait motion data were captured from 10 participants using a 3D motion capture system, and four shoes with different heel heights were used to study the effects of heel height on gait recognition. Finally, the recognition rates were compared using four methods and different heel heights.

Evaluation method in gait analysis (보행분석 시스템을 이용한 보행평가)

  • 박성하;김용환;박세진
    • Science of Emotion and Sensibility
    • /
    • v.6 no.4
    • /
    • pp.25-32
    • /
    • 2003
  • This paper suggests the evaluation method of gait analysis in measurements obtained using the "Foot Scanner" and "Foot Analyzer" system. Previous examination method with the unaided eye on the sole of the foot and analysis method of pressure distribution in gait have been discussed by many researchers. Also they have concerned with pressure curve, COP(center of pressure) trace, and velocity in COP. However experiment results depend on test environment and conditions of subjects. Consequently we need to regard the special energy parameter for solving the problem. The kinetic energy and impulse parameter can be used as parameters of gait analysis. The results of this study confirmed the validity of presented of the parameters through the experiment with eight subjects.

  • PDF

Heel Trajectory Analysis Method of Walking using a Wearable Sensor (착용형 센서를 이용한 보행 뒤꿈치 궤적 분석 방법)

  • Hee-Chan Kim;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.731-736
    • /
    • 2023
  • Walking is a periodic motion that contains specific phases and is a basic movement method for humans. Through gait analysis, various musculoskeletal health conditions can be identified. In this study, we propose a calf wearable sensor system that can perform gait analysis without space limitations. Using a ToF(: Time-of-Flight) sensor that measures distance and an IMU(: Inertial Measurement Unit) sensor that measures inclination the heel trajectory of walking was derived by proposed method. In case of abnormal gait with risk of fall, gait is evaluated by analyzing the change pattern of the heel trajectory.